SPECIAL – The Savanna Patterns of Energy and Carbon Integrated Across the Landscape campaign

J. Beringer; J. Hacker; L. B. Hutley; R. Leuning; S. K. Arndt; R. Amiri; L. Bannehr; L. A. Cernusak; S. Grover; C. Hensley; D. J. Hocking; P. R. Isaac; H. Jamali; K. Kanniah; S. Livesley; B. Neininger; K. Paw U; W. B. Sea; D. Straten; N. J. Tapper; R. A. Weinmann; S. Wood; S. J. Zegelin
Importance of ecosystems in the earth system

- Local ecosystem surface water and heat balance influences regional climate through **biophysics** (heat, moisture, energy)
- Regional to global coupling
- Coupled to global climate through **biogeochemical** cycles (C, N, P, etc.)
- Changes in climate inherently influence global circulation
- So land surface characteristics and change are important

Australian tropical savannas

- Savanna - trees (C3) and grass (C4)
- Open-forest/woodland savanna 25% of Australia, ~2 million km²
- Mining, Tourism, Pastoralism, Culturally
- Highly seasonal climate in the wet-dry tropics
- Cyclones, grazing and FIRE are disturbances
Spatial variability

• Strong rainfall gradient
• Savanna region heterogeneous vegetation
• Change in ecosystem characteristics (structure, composition, function)
• Utilise NATT as living laboratory
Savanna Patterns of Energy and Carbon Integrated Across the Landscape (SPECIAL) Campaign

Research question

- What are the patterns and processes driving surface-atmosphere exchanges across the northern Australian savanna landscape?

Isaac in Beringer et al. (2011)
Savanna Patterns of Energy and Carbon Integrated Across the Landscape (SPECIAL) Campaign

Field campaign in dry season 2008. Ongoing...

- **Ground based**
 - Flux towers (6)
 - Structural (DBH, height, species, GPS)
 - Leaf water and leaf morphology
 - Leaf Area Index (LAI2000 and photos)
 - Physiology (Aci and light use curves)
 - Soil water and physical properties
 - Biomass (live, dead, litter)
 - Remote sensing (ASD, CWD, Cover, etc)

- **Aircraft**
 - Boundary layer
 - Flux transects (transects and grids)
 - RS transects (Lidar, Hyperspectral, PLMR)

- **Satellite Remote Sensing**
 - LAI, GPP, ET
Beringer et al. (2011)
Beringer et al. (2011)
• Less carbon uptake

• Soil moisture and environmental drivers similar

• What drives these differences?

Beringer et al. (2011)
Savanna structure and composition
• Above-ground biomass, stem density, LAI and canopy height declined with rainfall

• Biomass ranged from 35 to 5 t C ha\(^{-1}\) along the 1714 to 400 mm rainfall range with LAI ranging from 1.5 to \(~0\)

\(R^2 = 0.76\)

\(R^2 = 0.65\)
Leaf Level Physiology

A_{ci} and light use curves
• Maximum Rubisco carboxylation velocity (V_{cmax}), G_s and C_i/C_a nearly constant
• Leaf mass per area increased strongly along the rainfall gradient
• Variation in ecosystem-level gas exchange not dominated by photosynthetic performance rather changes in LAI along transect.
• Satellite remote sensing of Leaf Area Index (LAI) undertaken (MODIS). Agreed very well with ground based hemispherical photos and LAI2000.
• Changes in LAI along transect shows thresholds

Sea et al. (2010)
Soil water and physical properties
Aircraft observations

Boundary layer budgets

Hacker in Beringer et al. (2011)
Aircraft observations

Plot grids

Hacker in Beringer et al. (2011)
Aircraft observations

Flux Transects

Hacker in Beringer et al. (2011)
Remote sensing (ASD, CWD, Cover, etc)
- Spectral library useful for end members
- Hyperspectral (PRI, LUE, NDVI, fluorescence, water content, N, chlorophyll, species classification, etc.).
- Challenge in scaling from leaf to plot (leaf angle, sun angle, obs angle)
- Radiative transfer model needed
- High resolution LiDAR for canopy structure.
- Then plot to landscape (MODIS, Landsat, etc.)
Scaling of productivity
Summary

- Scaling using MODIS performs well due to dependence on LAI. LAI is the expression of resources.

- Processed based LSM are challenged in savannas but optimality based models perform better.

- Exchanges varied substantially across the savanna region. Both in space and time.

- At short time scales the exchanges are modulated by the diurnal cycle of radiation.

- The spatial variability due to 1) meteorological drivers and 2) heterogeneity in the vegetation (structure, composition, function).

- At longer climate time scales the annual precipitation drives vegetation structure and composition, which in turn alters the land surface exchanges.
Acknowledgements

This work was funded by the Australian Research Council (DP0344744 and DP0772981). We are grateful to the NT Government and landowners who kindly provided access to their properties and resources (Theona Station, Newcastle Waters Station, Nenen Station, the NT Government’s Douglas Daly Research Farm and Tipperary Station). We are indebted to Simon Jones from RMIT for supplying the handheld spectrometer and his time and expertise in deploying it. We would like to thank the following colleagues and students for their assistance; Nicola Golding, Ian McHugh, Musa Kilinc, Danielle Martin, Wolfgang Lieff, Andrew McGrath, Cecilia Ewenz, Shakti Chakravarty, Theo Hankers, Boris Schneider, Helmut Thompson and Dave Conway. One of the aircraft had been donated by the late Joyce Schultz of Glen Osmond, South Australia.