Vegetation impact on mean annual catchment evapotranspiration: a global non-paired catchment perspective

Murray C Peel
Thomas A McMahon
Brian L Finlayson

1Department of Infrastructure Engineering, University of Melbourne, Australia
2Department of Resource Management and Geography, University of Melbourne, Australia

Motivation

• What is the long-term influence of vegetation type on mean annual catchment evapotranspiration (ET)?
 – catchment runoff (Q)?

• Primarily assessed through paired catchment studies
 – Two neighbouring or close catchments
 • 1 control & 1 treatment catchment
 • Treatment = land cover change
 • Vegetation influence assessed via response in Q to the treatment relative to control
 – Physical proximity of catchments minimises influence of
 • climate variability
 • inter-basin variability
Background

- >200 paired catchment studies reported in the literature
- Generally small catchments (<10 km²)
- Restricted climate range
 - USA: ~47% of reported studies
 • Köppen climate types C & D
 - Australia: ~27% of reported studies
 • Köppen climate types C
Background

• Paired catchment results
 – Forested ET > Non-forested ET
 • Forested Q < Non-Forested Q

• Are these results observed at
 – larger scales?
 – across a range of climate types?
 – when looking at results from single catchments (not paired catchments)?
Research Questions

• Is climate type important when assessing vegetation impact on mean annual ET?
• Are differences in ET observed between catchments with:
 – forest and non-forest?
 – evergreen and deciduous forest?
 – evergreen broadleaf and evergreen needleleaf forest?
• If ET differences exist – are they related to catchment area?
Analysis Method

• Large dataset of single catchments
 – Catchment area (km\(^2\)): 3.6 – 4,640,300, med. = 1,620
 – Record Length (years): 10 – 172, med. = 32
 • Mostly between 1950 – 1985

 – Group by dominant (≥75%) vegetation type
 – Compare long-term actual ET between groups
 • Here ET = P – Q \ (water balance approach)
 – Not directly estimated via meteorological variables
 • Look for differences in catchment ET between vegetation type groups
Catchment data

- Large global hydroclimatic dataset
 - 699 catchments from around the world
 - Spatially & climatically diverse
 - “Natural” catchments
 - not impacted by reservoirs / diversions

- Spatial
 - DEM: HYDRO1k & Aust. 250m
 - Climate type: Köppen (Peel et al., 2007)
 - Vegetation: Global Land Cover 2000 (GLC2000)
 - 1 km satellite based dataset (Fritz et al., 2003)
 - May not be the vegetation cover during the period of runoff observations

- Monthly data for each catchment
 - Precipitation (P), Temperature (T) & Runoff (Q)
 - Concurrent, no elevation correction for P or T
 - Monthly average Potential ET (PET)
Water Balance check

- Runoff Ratio = Q/P, Aridity = PET/P
Water Balance Check

Peel, McMahon & Finlayson
(2010)
Is climate type important when assessing vegetation impact on mean annual ET?

Peel, McMahon & Finlayson (2010)
Forest vs non-forest ET

- Traditional: not stratified by climate type

Opposite of expectations
Non-forest ET > forest ET
Forest vs non-forest ET

Aridity

- Replace MAP with Aridity (PET/MAP)

Still opposite of expectations
Non-forest ET > forest ET

Peel, McMahon & Finlayson (2010)
Forest vs non-forest ET
Aridity & Climate type

- Tropical catchments
 - Forested ET ~170mm > non-forested ET (medians significantly different)

Peel, McMahon & Finlayson
(2010)
Forest vs non-forest ET
Aridity & Climate type

- Temperate catchments
 - Forested ET ~ 130mm $>$ non-forested ET (medians significantly different)

Peel, McMahon & Finlayson (2010)
Forest vs non-forest ET
Aridity & Climate type

• Cold catchments
 – Non-Forested ET ~90mm > Forested ET (medians significantly different)

Peel, McMahon & Finlayson
(2010)
Are vegetation type differences in ET related to catchment area?

- Tropical catchments
 - Inconclusive
 - Distribution of catchments along aridity gradient made comparison impossible

- Temperate catchments
 - Forest ET significantly (~130mm) > non-forest ET
 - Maintained for catchments < 1,000 km2
 - Not maintained for catchments ≥ 1,000 km2

- Cold catchments
 - Forest ET significantly (~90mm) < non-forest ET
 - Not maintained for catchments < 1,000 km2
 - Not maintained for catchments ≥ 1,000 km2

Peel, McMahon & Finlayson (2010)
General Conclusions

• Climate type is important when comparing catchments
 – Influence of vegetation type on ET not observed when climate type ignored

• Aridity is important
 – Captures the interaction between water and energy limitation
 – Should be used in preference to MAP in this type of analysis

• Utility of a large spatially and climatically diverse dataset demonstrated
Specific Conclusions

• Vegetation type related differences in ET only apparent when stratified by climate type

• Forest vs Non-Forest hypothesis
 – Tropical (~170mm) & Temperate (~130mm) forested ET > non-forested ET
 – Cold (~90mm) forested ET < non-forested ET
 • Unexpected result, possible forested catchment data issues

• Evergreen vs Deciduous hypothesis
 – More deciduous catchments required to test

• Broadleaf vs Needleleaf hypothesis
 – More needleleaf catchments required to test

• Area hypothesis
 – Temperate forest vs non-forest results maintained for catchments < 1,000 km², but not ≥ 1,000 km²

Peel, McMahon & Finlayson (2010)
Funding & References

- Australian Research Council Discovery Grants (DP0449685 & DP0773016)
- Adam JC, Clark EA, Lettenmaier DP & Wood EF (2006):
- Andréassian V (2004):
- Bosch JM & Hewlett JD (1982):
 - A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. *J. Hydrol.*, 55, 3-23.
- Droogers P & Allen RG (2002):
- Farley KA, Jobbágy EG & Jackson RB (2005):
 - Harmonisation, mosaicing and production of the Global Land Cover 2000 database (Beta Version), Joint Research Centre, European Commission EUR 20849 EN.
- Peel MC, Finlayson BL & McMahon TA (2007):
- Sahin V & Hall MJ (1996):
 - The effects of afforestation and deforestation on water yields. *J. Hydrol.*, 178, 293-309.

Peel, McMahon & Finlayson (2010)
Evergreen vs deciduous forested ET

- Temperate catchments
 - Non-significant difference in median ET (unexpected result)
Evergreen vs deciduous forested ET

• Most deciduous catchments (7 of 9) in summer dominant P regimes
 – Drought deciduous forest, not obligately deciduous
 • Expect little difference in ET between drought deciduous and evergreen forested catchments

• To test the initial research question requires more obligately deciduous forested catchments
Broadleaf vs needleleaf evergreen forested ET

- Temperate catchments
 - Significantly different medians, but small needleleaf sample size