Beyond the black box: A perspective on plant function for carbon cycle and land surface modelling

Iain Colin Prentice

Department of Biological Sciences, Macquarie University
Grantham Institute & Division of Ecology and Evolution, Imperial College
Topics

• 2 scandalous findings from IPCC 2007 (we can’t model the carbon cycle; we can’t model the hydrological cycle)

• What’s missing?

• 2 examples why biology can be simpler than physics (because of natural selection)

• Includes yet another spin on optimal stomatal conductance

• A brief manifesto for the ‘next-generation DGVM’
“Uncertainty” in C cycle feedbacks

Friedlingstein et al. (2006) J. Climate
“Uncertainty” in hydrological cycle feedbacks
What is missing?

- **Benchmarking** (both carbon and water metrics)…. necessary, but not sufficient
- **Data assimilation**…. valuable, but not “the answer”
- **Clear thinking**…. explicit, tested or testable hypotheses
- **Transparency** in models
- **Synergy** between modelling and experimental work
- **Optimization**: the “missing law” of biology (and thus biophysics and biogeochemistry)
Dobzhansky’s dictum

“Nothing in biology makes sense except in the light of evolution”
What is optimized?

• Cowan & Farquhar (1977): maximize assimilation, minus cost of transpiration
• maximize \(A - \lambda E \) where \(\lambda \) is the “carbon cost of water”
• Solution by Medlyn et al. (2011) under light limitation
• \(c_i / c_a \approx g_1 / (g_1 + \sqrt{D}) \), where \(D \) is vpd and:
 • \(g_1 = f (\lambda, \Gamma^*, a) \)

• (NB the devil in the details)
What is optimized?

- Wright et al. (2003 Am. Nat.): minimize the sum of the unit costs of transpiration and photosynthesis
- minimize \(aE/A + bV_{cmax}/A \)
- Solution by Prentice et al. (in prep.) under Rubisco limitation
- \(c_i/c_a \approx g_1/(g_1 + \sqrt{D}) \), where \(D \) is vpd and:
- \(g_1 = f (b, K, \Gamma^*, r_s, h, \rho_s, \eta, \Delta \Psi_{max}, k_s) \)
Testable hypotheses

• Does c_i/c_a vary with D in the way predicted?
• How does g_1 vary with soil moisture?
• Does this variation explain the effects of drought on assimilation?
• How do these relationships differ among different types of plants?
North East China Transect

Prentice IC, T Meng, H Wang, SP Harrison, J Ni, G Wang (2011) *NP*

Highly consistent response of c_i/c_a to aridity in C_3 plants (indexed by leaf $\delta^{13}C$)

Within species response similar to between species response
Measured response of $A/(g_s c_a - A)$ to D

S Zhou, R Duursma, B Medlyn, IC Prentice et al. (in prep.)

Fagus sylvatica data: Op de Beeck et al. 2010

AFM
Experimental responses of g_1 to pre-dawn water potential

S Zhou, R Duursma, B Medlyn, IC Prentice (unpubl.)
Experimental responses of V_{cmax} to pre-dawn water potential

S Zhou, R Duursma, B Medlyn, IC Prentice (unpubl.)
What else is optimized?

- Haxeltine and Prentice (1996), Dewar (1996): leaf-level optimization of leaf carbon gain \Rightarrow optimal V_{cmax} (for well-watered conditions)
- Predicts:
 - A single optimal value of V_{cmax} and leaf N
 - The light use efficiency model
 - Vertical gradients of leaf N and V_{cmax}
 - Declining leaf N with temperature
 - “Acclimation” of leaf N and V_{cmax} to $[CO_2]$
- Inhabits: LPJ, LPX
- Implies: Leaf N is determined by V_{cmax}
- Systematic testing: very little
A more general form: conditional optimization

• “Co-ordination hypothesis”: Rubisco- and light-limited photosynthetic rates are equal under normal field conditions (Maire et al. 2012 PLOS One)
• Not a new idea, but little investigated
• Relevant time scale for large-scale modelling
Test of the co-ordination hypothesis

Maire et al. (2012) PLOS One
North East China Transect

As c_i/c_a declines, leaf N increases

Does leaf N acclimate to long-term drying?
Towards the next-generation DGVM

- Much DGVM work focuses on “additional processes” (e.g. fire, CH$_4$, N$_2$O, land-use effects in LPX)
- Ill-directed frenzy of modelling C-N cycle coupling
- Little work on the “dynamical core”…. We need:

 1. A model structure based on testable hypotheses.
 2. Explicit relationships of model parameters to field-measurable traits.
 3. Close connection of model development to experiments.
Thanks

• Especially: Remko Duursma, Belinda Medlyn, Shuangxi Zhou, Ni Jian, Meng Tingting, Wang Han, Jean-François Soussana…

• …and Ray Leuning!