Is the grass greener on the other side?

Land Use and Land Cover Change and in Australian Savannas

Jason Beringer (Monash), Lindsay Hutley (CDU), Stephen Livesley (U Melb), Stefan Arndt (U Melb), Sam Grover (CDU), Hizbullah Jamali (U Melb), Klaus Butterbach-Bahl (IMF Germany, Garry Cook (CSIRO), Tracey Dawes (CSIRO)

Paul Purdon (NTG), Peter Stephens (NTG), Garry Richards (DCCEE)
Introduction

- Tropical savanna ecosystems are a major contributor to global CO$_2$, N$_2$O & CH$_4$
- Increasing pressure to develop agriculture - deep-rooted native trees replaced with shallow rooted pasture species
- The Daly River catchment of northern Australia has large areas of cleared native savanna vegetation for pasture. NOW change to hardwood species.
- Understanding impacts a key to sustainable management
 - What is the impact of Land Use and Land Cover Change (LULCC) on climate (GHG) and hydrological processes (ET) across the catchment?
 - Today look at total GHG budget
Research themes

• Link to climate change policy
 – Research needed to improved understanding of savanna carbon stocks and flows
 • Vegetation and soil derived emissions and sinks
 • Fire derived GHG emissions (WALFA et al.)
 • Carbon Farming
 – Total savanna GHG balance required

• Scientific basis for verification essential
Understanding Carbon Dioxide Fluxes

- Canopy photosynthesis function of light, available water, nutrients, VPD, Leaf Area Index and CO₂ concentration.
- Strongly climate modified
- Autotrophic respiration depends on photosynthesis and temperature
- Heterotrophic respiration dependant on water and modified by temperature
- Short and long term exchanges which are modified by LULCC
- Other GHGs too!

(Trumbore et al. 2006)
Ecosystem Carbon Balance

GPP

Plant resp

Soil and litter resp

Disturbance

NPP

Short term uptake

Medium-term storage

NEP

Long-term storage

NBP
Land-use change sequence

Greenhouse gas exchange

CO₂ N₂O CH₄

Woodland

Soil carbon change

Pasture

Years under different land-use

Courtesy Stephen Livesley (Uni Melb)
Aims

GHG dynamics and nutrient cycling in north Australian savannas

$\text{CH}_4, \text{N}_2\text{O}, \text{CO}_2$

Spatial and temporal variability

Effect of Fire

Land use change

Contribution of termites

Mechanisms controlling emissions
Physical, chemical and biological soil properties

Methods

Eddy-covariance towers
Automated trace gas system
Manual trace gas chambers
Soil nutrient and moisture Modelling (NCAT, DNDC)
Study Area

- Daly River catchment covers approx 53,000 sq. km and 200 km south of Darwin
- Rainfall dominated by short, intense wet season, decreases from north west (~1400mm) to south east (~700mm)
- Savanna vegetation (tree/grass), with varying structural attributes
- Low relief catchment (0-475m), with skeletal, uniform sands, earths, texture contrast and cracking clay soils
- 4-8% of catchment suitable for agriculture (earth soils)
CO$_2$ exchange using flux towers

- The only method of *directly* determining fluxes.
- Non-invasive
- Measures at whole ecosystem level above canopy
- Gives Net Ecosystem Exchange (~NEE) of CO$_2$
- Can calculate Gross Primary Production and Ecosystem Respiration
- Also measures evapotranspiration and energy
- Most accurate method but is complex.
- Hourly measurements continuously over years (scale up to annual sink/source)
- Complementary to other techniques (top-down and bottom-up)
Net Ecosystem Production

- Eddy covariance measurements of NEP
- Neural network model for ecosystem respiration (R_e)
- NEP = GPP – R_e
- Uncertainties in methodologies
Daly River savanna uncleared
(14.159S, 131.388E)
Daly River regrowth site
(14°07’50.16”S, 131°22’58.08”E)
Daly River savanna Regrowth
Daly River Pasture site

\(14^\circ 3'47.88''S \ 131^\circ 19'5.16''E\)
Daly River Pasture site
Year 2008
Solar = 7888 MJ yr\(^{-1}\)
Rainfall = 1389 mm yr\(^{-1}\)
VPD = 17.4 kPa

Regrowth 0.950
Pasture -0.386
Table 3: Annual NEE for pastures and cultivated field (Priante-Filhou et al. 2004; Santos et al. 2004; Sakai et al. 2004)

<table>
<thead>
<tr>
<th>Country</th>
<th>Station</th>
<th>NEE [tCha-1yr-1]</th>
<th>Year</th>
<th>Type of Vegetation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brazil</td>
<td>Cortiguacu</td>
<td>-1.66</td>
<td>2000</td>
<td>Pasture</td>
</tr>
<tr>
<td>Brazil</td>
<td>Fazenda Rio de Janeiro</td>
<td>No Data</td>
<td>2003</td>
<td>Pasture</td>
</tr>
<tr>
<td>Brazil</td>
<td>Santarem</td>
<td>-3.87</td>
<td>Dec 2000-Nov 2001</td>
<td>Pasture</td>
</tr>
<tr>
<td>Brazil</td>
<td>Santarem</td>
<td>6.88</td>
<td>Nov 2001-Dec 2001</td>
<td>Bare Soil</td>
</tr>
</tbody>
</table>
Vegetation carbon pools (t C ha\(^{-1}\))

<table>
<thead>
<tr>
<th></th>
<th>Savanna</th>
<th></th>
<th>Regrowth</th>
<th></th>
<th>Pasture</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Overstory</td>
<td>Understory</td>
<td>Overstory</td>
<td>Understory</td>
<td></td>
</tr>
<tr>
<td>AGB</td>
<td>31.1</td>
<td>2.15</td>
<td>1.4</td>
<td>2.45</td>
<td>1.5</td>
</tr>
<tr>
<td>BGB</td>
<td>28.7</td>
<td>~0.5</td>
<td>1.3</td>
<td>~0.5</td>
<td>?</td>
</tr>
</tbody>
</table>
• Total soil column mineral organic C higher at Pasture site
• 28 years old but in trajectory from clearing to equilibrium.

![Soil sequestration rate – improved pastures](image)

0.37 t C ha\(^{-1}\) y\(^{-1}\)
N$_2$O and CH$_4$ fluxes represent <1% of soil GHG flux in CO$_2$-e terms
Carbon fluxes vary on different time scales

- Annual NEP (source or sink?). Inter-annual variability due to grass productivity – related to growing season. Climate change.
- Woody savanna less variable and small sink.
- Dry season irrigation led to greater N$_2$O emissions in pasture soils than uncleared savanna but similar reductions in soil CH$_4$ uptake.
- N$_2$O fluxes were minimal and uncleared savanna soil was a constant CH$_4$ sink.
- Soil GHG emissions are dominated by CO$_2$.
- LULCC from savanna to pasture increased soil GHG emissions.
- Changes in stocks must be taken in context of LULCC and succession. Need longitudinal data.