

Fluxing up the Deep North — an update

Mila Bristow (CDU), Jason Beringer (Monash), Peter Isaac (TERN), Stephen Livesley (U Melb), Stefan Arndt (U Melb), Matthew Northwood (CDU), Benedict Fest (U Melb), Lindsay Hutley (CDU)

Outline

- Northern Tropical Transect CDU, Monash, UTS
 - TERN OzFlux
 - ARC Discovery program Australian savanna landscapes: past, present and future (Beringer, Hutley, Yu, Haverd et al.)
 - Dr Brad Evans Project Research Fellow (MQ Uni)
 - ARC Future Fellow Beringer.com
- Land Use Change CDU, Monash, Melb Uni
 - ARC Linkage project Impacts of deforestation and afforestation on greenhouse gas emissions, and carbon and water resources
 - Dr Mila Bristow Project Research Fellow (MQ Uni)
 - ARC LIEF Mobile Australian field isotope alliance (MAFIA) JCU, ANU, CDU
- Tropical Savanna Super Site CDU, Monash, NT Gov
- Carbon Farming Initiative: SOC and afforestation Qld Gov, USC,
 CDU
- ARC DP Deciphering pre-human records of vegetation from northern Australian savanna

North Australian landscapes Savanna burning – 2011 fire scars

TERN OzFlux Facility
Fogg Dam North Australian Flux Network **Howard Springs Adelaide River** Warruwi **Daly River: Uncleared** _ Maningrida Galiwinku Rainfall gradient Nhulunbuy Oenpelli Alyangula Keats Katherine 1200 Ngukúrr Mataranká Borroloola **Dry River** Daly Waters Wollogorang 1000 Victoria River Downs **Sturt Plains** Elliott Brunette Downs Tennant Creek Avon Downs Spatial patterns of mass and **UTS** managed ari energy exchange All Curuna zone tower

Savanna land use change

Land use in Australia today

Land Use Change – Impacts of deforestation and afforestation fluxes of C and water

North Australian water resources

LUC Program - Savanna clearing and GHG

Red Dirt Melon Farm (RDMF) Flux Tower

RDMF Tower - Expansion of an established water melon farm

Savanna clearing and GHG

- Flux towers on paired sites
- Non-CO₂ program
- Track emissions from LUC
- Scale up to annual sink/source

Tools used: standing biomass

- Need to know stocks as well as fluxes
- How much biomass in the savanna?
- Fire emissions calculations

Non-CO₂ fluxes, soil C & N stocks with LUC

- Temporal and spatial sampling of soil efflux CO₂ and non-CO₂ and drivers
- Replicated cleared and uncleared plots
- NO₃, NH₄ pool size and net nitrification
- Soil physico-chemical characteristics

- Tower install preclearing
- Late dry season, Sep 2011
- Uncleared site running

Clearing, March 2012

 Curing and decomposition, regrowth, May-August 2012

• Fire event, 16 August 2012

Post-fire, stock-pile, re-burn,
 August

 Post-fire, debris removal, late dry season, September-October

Early wet season, re-growth,
 December to Feb 2013

 Wet season, re-growth, site preparation

- Dry season, site preparation, disc ploughing, June
- Final prep and planting August 2013

LUC flux time series – CO₂ + non-CO₂

Melon production

Soil methane flux in relation to soil moisture change

Soil nitrous oxide flux in relation to soil moisture change

Soil carbon dioxide flux in relation to soil moisture change

Soil methane at a chamber level

CO₂ from clearing: comparing cleared and uncleared tower sites

- Equivalent to 31.4 t C ha⁻¹ (or 115.4 t CO_2 -e ha⁻¹)
- Equivalent to 12 years of carbon sequestration

LUC and water resources - afforestation

- Savanna v pasture v plantation forestry
- Preliminary modelling of water balance

Summary of water balance components for contrasting land uses in the Douglas-Daly catchment, NT using the 3PG2 forest growth model. This modelling is described in Section 4 of this report. All units are mm y^{-1} .

Water balance components	African mahogany plantation	Tropical savanna	Improved pasture
Rainfall	1286	1260	1260
Canopy Transpiration	(637)	270	898
Understory transpiration	n/a	392	n/a
Interception	90	64	56
Soil Evaporation	180	184	191
Total evapotranspiration	907	910	1157
Runoff/drainage	403	379	74
ΔSoil	24	30	-28

Savanna Super Site – Litchfield NP

- Fire and fluxes
- Remote sensing savanna structure – tree:grass dynamics
- TERN OzFlux
- TERN AusCover

- Progress:
- 1. AAPA clearance
- 2. Soil testing
- 3. LiDar
- 4. Vegetation surveys, LAI comparison

Savanna Super Site – Litchfield NP

