TWO TOWERS IN THE TROPICAL RAINFOREST: A DOUBLE CHALLENGE

Mike Liddell
Chemistry Department
James Cook University
MTSRF Project 5.ii.2

- **Sub-project 1**: Is there a measurable change in carbon, water or sensible heat fluxes that can be attributed to climate change perturbing the rainforest?
- **Sub-project 2**: Are there changes in physiological behaviour or productivity in the rainforest that can be attributed to climate change.
- **Sub-project 3**: Determining the potential effects of changing climate on the fluxes of water and carbon through the soil profile.
- **Sub-project 4**: Examining the flowering and fruiting responses of the plant community to climatic stress.
- **Sub-project 5**: Climate variability vs resource driven variation in insect populations.
Two Towers

Sub-project 1:
Fluxes vs Climate Change
Mike Liddell (JCU)

- **Station 1: Cape Tribulation**
 Based at the Australian Canopy Crane
 this station has been operating since March 2001.

- **Station 2: Cow Bay**
 Based at the Daintree Discovery Centre
 has been in operation since December 2008.
Satellite Imagery
Cape Tribulation
LANDSAT
80m resolution
- Both sites are in complex terrain.
- Only daytime flux data is being used for long term analyses.
Daintree Forest

- Pristine lowland rainforest at both stations.
- Complex Type 1A mesophyll vine forest
- Canopy height 25-35m – dependant on topography/soils.
- Leaf area index Station 1 ≈ 4 (Amazon 8-10)
- High species diversity Station 1: 88 tree spp. in 1 Ha.
- Moderate stand density Station 1: 680 stems >10cm dbh in 1 Ha
- Significant species overlap between the two stations both in flora and fauna.
Discovery Tower

- 23m walk-up tower
- 12m mast
- System went on-line Dec 2008
- Remote access via LogmeIn
- A few issues to date with power supply, data storage.
Crane Tower

- Running since 2001. Due to be upgraded to the same set-up as the Discovery Tower.
- Comparable data obtained in 2009 from the two systems: Fc, H, LE.
Micromet Data

- Cape Tribulation. AWS running since Jan 2000.
- Discovery Tower. AWS running since Jan 2008.
Sub-project 2: Physiology vs Climate Change
Will Edwards (JCU)

- Grid network was established at the start of 2007

One hectare sampling grid for litter traps, soil and LAI at the Cape Tribulation Canopy Crane study site.

- Litter trap
- Crane tower

100 m
Total Litter Fall

<table>
<thead>
<tr>
<th>Forest formation and place</th>
<th>Fine litterfall (t ha(^{-1}) year(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lowland evergreen rain forest:</td>
<td></td>
</tr>
<tr>
<td>Mulu, Sarawak: ridge</td>
<td>7.7</td>
</tr>
<tr>
<td>valley alluvium</td>
<td>9.4</td>
</tr>
<tr>
<td>Pasoh, Malaya</td>
<td>10.6</td>
</tr>
<tr>
<td>Penang, Malaya</td>
<td>7.5</td>
</tr>
<tr>
<td>Manaus, Brazil</td>
<td>7.6</td>
</tr>
<tr>
<td>Lowland semi-evergreen rain forest:</td>
<td></td>
</tr>
<tr>
<td>Barro Colorado, Panama</td>
<td>13.3</td>
</tr>
<tr>
<td>Kade, Ghana</td>
<td>9.7</td>
</tr>
</tbody>
</table>

Mainly from Whitmore (1984a, Table 10.8); Anderson and Swift in Sutton et al. (1983, Table 1)
† Heaney and Proctor (1989)

Total Litter Fall 2007
12.35 tonne/ha/yr

Total Litter Fall 2008
10.97 tonne/ha/yr

Woody material 35% 2007 21% 2008
Dendrometer Bands

- Dendrometer bands were placed on 170 trees with DBH >25cm March 2007
- There are differences between species in their increase in DBH
- Converted to AGB there are significant differences between families in their ability to store biomass.
- So far no indication of interannual variations related to climatic variation.
Canopy Cover

- LAI photos taken at each of litter traps to establish variations in canopy cover from the ground.
- Latest site value (2009) was 3.9
- Prof. Peter Hietz (Vienna) using photographic overlays to investigate changes in canopy cover from above the canopy.

April 2009
Trap 2
Sub-project 3: Soils vs Climate Change
Paul Nelson (JCU)

- Soil pit was installed in mid 2007
- 3 Depths 0.1m, 0.75m, 1.5m
- Sensors:
 - Temperature (thermocouple)
 - Water content (TDR probes)
 - Water potential (Gypsum blocks)
- Vacuum system
 - Used to collect water infiltrating through the profile for measuring DOC movement
Water uptake in 2008

Some rainfall data missing for Apr-May and Nov-
Water uptake depth

Wet soil: Greatest water extraction from topsoil (most negative change in water content)

Dry soil: Least water extraction from topsoil

Date Range: 8/04/2008 to 26/08/2008

Daily change in water content (m³/m³)

Soil profile water content (mm)

8/04/2008 - 26/08/2008
Water uptake from groundwater

- Installed 3 bores to measure uptake from groundwater
- Bedrock at 12-33 m depth
- Watertable at 10-13 m depth (July 2008- April 2009)
- Marc Le Blanc (JCU) is in charge of this part of the sub-project.
Sub-project 4: Phenology vs Climate Change
Caroline Gross (UNE)

SkyRail
- 5km transect using Cairns Skyrail
- Long term project: 10 years +
 initiated under MTSRF with
 co-funding from SkyRail Foundation.
- Digital images – 12 MP
- Monthly sampling
- Select species will be chosen that
 have a sensitivity to extinction &
 various breeding systems
Phenology so far (T23-24)

Jan 09
Feb 09
Mar 09
Apr 09
Digital Stitching (T7-T8)
Phenology Crane Site

- Phenological events are recorded monthly using the crane which began in Jan 2009
- Budding, flowering and fruiting events are recorded as presence or absence.
- Photography was too hard and so visual presence/absence is being used.
Aims:

- To document the temporal variability of the leaf litter inhabiting insect fauna
- To test if seasonal fluctuations are due to changes in the quantity or quality of organic input from the canopy above and/or are related to climatic fluctuations

Sub-project 5: Insect populations vs Climate Change
Nigel Stork, Peter Grimbacher (UniMelb)
Methods

- Collect insect fauna inhabiting leaf litter at the Cape Tribulation site on a monthly basis over several years

- Standardised volume (5 litres)
Numeric Results
Leaf litter beetle density over time

Density of beetles

2006 2007 2008 2009
Litter Manipulation

The amount of available leaf litter is a factor controlling beetle abundance.

- Further data collection (Leaf litter volume and quality, climatic data)
- More analyses to conduct

![Graph showing number of beetles in different conditions](image)

- **Addition**
- **Control**
- **Exclusion**

P=0.05
Acknowledgements

Prof. Steve Turton (ATFI)
Dr Peter Franks (JCU Botany)
Dr Paul Nelson (JCU Earth Sciences)
Cassandra Nichols (JCU ACCRF)
David Blake (UQ)
Nicolas Nieullet (ENGREF, FRANCE)
Otavio Campoe (UNESP, BRAZIL)

Australian Crane Research Facility
Dick Cooper (late), R. Rader, K. Goodall.
Research Assistants: T. Shmueli, C. Fairweather, T. Fischer

Funding: MTSRF, ARC (RIEF), CRC-TREM
State Government – Premiers Dept.
JCU (Program, MRG), Discovery Centre.