The Australian flux and ecosystem research network

Presentation by Dr Helen Cleugh, Dr Eva van Gorsel and Dr Ray Leuning
Purpose of Facility

- Terrestrial ecosystems modulate climate
- Globally, terrestrial ecosystems sequester about 25% of CO2 emissions.
- Impact of climate change on terrestrial ecosystem functioning can be informed and quantified by energy, water and carbon budgets

RG Anderson et al.
Front Ecol Environ 2010; doi:10.1890/090179
Purpose of Facility

- measure flows of carbon and water (NEE, ET)
- measure flows of energy (radiation Q, heat H)

Drivers:
- above-canopy meteorology (Q, T, VPD)
- soil temperature, moisture and heat fluxes

Analysis and Interpretation:
- within-canopy temperature, CO2, humidity and wind profiles
Key Questions being Addressed

Fluxes
- Canopy conductance and photosynthesis
- Autotrophic and heterotrophic respiration
- Surface temperatures and heat fluxes
- Surface water balance
- Soil heat and moisture

Ecosystem dynamics
- Allocation
- Litter production
- Phenology
- Nutrient cycles

Landscape dynamics
- Vegetation dynamics & disturbance
- Land use and land cover change

M. Williams et al.
www.biogeosciences.net/6/1341/2009/
Key Questions being Addressed

Tumbarumba

- PIs: van Gorsel and Leuning

![Diagram](image)

- Shortwave incoming radiation
- Soil temperature
- Vapour pressure deficit
- Soil water content
- Leaf area index
A decade of hourly measurements at Tumbarumba flux station
(*E. Delegatensis*)
Infrastructure to be Delivered

• A network of flux stations delivering nationally consistent observations of energy, carbon and water fluxes
 – Common and long-term set of core measurements
 – Quality-controlled data sets available via TERN portal

• Understanding ecosystem function and biogeochemical cycles for ecosystem and land surface models
 – Provide parameter values
 – Evaluate uncertainties in model performance for Australian ecosystems

• Data needed to quantify water and carbon balances under existing and future climates

• Understanding ecosystem response to climate change

• Advancing climate and Earth system science; especially ACCESS development

Green - core observations made to standard measurement protocols
Gray - ‘constellation’ measurements specific to each site
Infrastructure to be Delivered
Our plan for community engagement

M. Williams et al.
www.biogeosciences.net/6/1341/2009/
Our plan for community engagement

Northern Tropical Savanna Flux Transect

- PIs: Beringer and Hutley
- Carbon balance and hydrology
- Disturbance: Land clearing and fire
- Aerosols and trace gas emissions
Our plan for community engagement
Acknowledgements

ARC
ACCSP
DCCEE
Bushfire CRC
TRaCK
CSIRO
James Cook University
Queensland University of Technology
Monash University
University of Melbourne
Forestry Tasmania
University of Adelaide
Charles Darwin University
University of Technology, Sydney
The University of Sydney
University of Waikato, NZ
Landcare Research, NZ
Facility Contact Details

THANK YOU

Eva van Gorsel eva.vangorsel@csiro.au
Helen Cleugh helen.cleugh@csiro.au
<table>
<thead>
<tr>
<th>Site Name</th>
<th>Ecosystem</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Robson</td>
<td>Simple notophyll vine forest</td>
<td>Qld (Atherton Tablelands)</td>
</tr>
<tr>
<td>2. Cape Tribulation*</td>
<td>Complex mesophyll vine forest</td>
<td>Qld (Daintree)</td>
</tr>
<tr>
<td>3. Samford</td>
<td>Peri-urban</td>
<td>Qld (Brisbane)</td>
</tr>
<tr>
<td>4. Tumbarumba</td>
<td>Alpine ash forest (E. delegatensis)</td>
<td>SE NSW</td>
</tr>
<tr>
<td>5. Wallaby Creek</td>
<td>Mountain ash forest (E. regnans)</td>
<td>SE Vic</td>
</tr>
<tr>
<td>6. Wombat</td>
<td>Dry sclerophyll Eucalypt forest (E. obliqua; E. radiata and E. rubida)</td>
<td>Central Vic</td>
</tr>
<tr>
<td>7. Warra</td>
<td>E. obliqua forest</td>
<td>Tasmania</td>
</tr>
<tr>
<td>8. Nimmo High Plains</td>
<td>Poa C₃ grassland</td>
<td>NSW alpine region</td>
</tr>
<tr>
<td>9. Chowilla</td>
<td>Mallee</td>
<td>SA (Lower Murray)</td>
</tr>
<tr>
<td>10. Gnangara</td>
<td>Coastal heath</td>
<td>Southern WA</td>
</tr>
<tr>
<td>11. Great Western Woodlands**</td>
<td>Temperate woodland, heath and mallee</td>
<td>WA</td>
</tr>
<tr>
<td>12. Hamersley Station*</td>
<td>Semi-arid C₄ grassland</td>
<td>NW WA</td>
</tr>
<tr>
<td>13. Weeli Wolli Creek*</td>
<td>Semi-arid, riparian coolabah woodland</td>
<td>NW WA</td>
</tr>
<tr>
<td>NT Savanna Flux Transect</td>
<td></td>
<td>NT – N/S transect</td>
</tr>
<tr>
<td>14. Howard Springs</td>
<td>Wet tropical savanna to rangelands</td>
<td></td>
</tr>
<tr>
<td>15. Daly** and 16. Dry River**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Alice Springs</td>
<td>Mulga – arid rangelands</td>
<td>NT</td>
</tr>
</tbody>
</table>