

A re-assessment of rooting depth dynamics and their influence on catchment water fluxes

Randall Donohue¹, Michael Roderick², Tim McVicar¹ 25 June 2012

www.csiro.au

¹Environmental Earth Observation Group, CSIRO Land and Water ²Research Schools of Earth Sciences and of Biology, ANU

Estimating average stream flow using Budyko's model

Note: Budyko originally framed this as water supply (*P*) verses energy supply (R_s). It is common to use R_s and evaporative demand (E_p) ~interchangeably. **Budyko**, M.I., 1974. Climate and life. International Geophysics Series, 18. Academic, New York, 508 pp.

Estimating average stream flow using Choudhury's formulation

n = 1.8 for large catchments $n \approx 1.9$ is Budyko's curve

Choudhury, B.J., 1999. Evaluation of an empirical equation for annual evaporation using field observations and results from a biophysical model. Journal of Hydrology, 216(1/2), pp 99-110

Porporato et al's supply/storage relation

 κ = relative soil water holding capacity (mm/mm) Z = max. storage depth (mm) α = storm depth (mm)

Budyko's curve is where the storage depth is ~5.5 times the mean supply depth

Z is the extraction (rooting) depth = vegetation!

Porporato, A., Daly, E. and Rodriguez-Iturbe, I., 2004. Soil water balance and ecosystem response to climate change. Am Nat, 164(5), pp 625-632

For a given vegetation type, what determines rooting depth?

Broad generalisations suggest that, under water-limited conditions...

Precipitation amount

...the higher the rainfall, the deeper the rooting depth (Schenk and Jackson, 2002)

Precipitation intensity/seasonality

...the higher the rainfall intensity and/or seasonality under a given annual rainfall, the deeper roots become in order to maintain the same transpiration rate (Laio et al., 2002; Milly, 1994a; Porporato et al., 2004; Schenk and Jackson, 2002).

Models of rooting depth typically capture only the first of these generalisations......

Schenck-Jackson – empirical model (Z_{max})

Schenk, H.J. and Jackson, R.B., 2002. J Ecol, 90, pp 480-494

Perennial grasses

$$Z_{max} = -2.662 + 0.392 \log P + 0.543 \log E_p$$

Trees

$$Z_{max} = 4.967 - 0.086 \log P + 1.323 \log E_p$$

Schenck-Jackson – empirical model (Z_{max})

Schenk, H.J. and Jackson, R.B., 2002. J Ecol, 90, pp 480-494

Guswa – estimates the marginal carbon cost and benefit of deeper roots (Z_e)

Guswa, A.J., 2008. Water Resour. Res., 44(2).

Z_e is estimated, for a vegetation type, as a function of

- ϕ = dryness index
- κ = relative soil water holding capacity
- α = storm depth
- γ_r = mean root respiration rate
- f_s = growing season length
- **SRL = specific root length**
- **RLD = root length density**
- WUE = water use efficiency (of photosynth)

Schenck-Jackson – empirical model (Z_{max})

Schenk, H.J. and Jackson, R.B., 2002. J Ecol, 90, pp 480-494

Guswa – estimates the marginal carbon cost and benefit of deeper roots (Z_e)

Guswa, A.J., 2008. Water Resour. Res., 44(2).

'Set-depth' – a constant rooting depth apportioned by remotely sensed fractional vegetation cover:

$$Z_e = 900F_{tree} + 600F_{grass}$$

All of these models are run at the annual average time-step

The effects of climate seasonality!

A seasonal implementation of Guswa's model

Stream flow estimated using the BCP model

Implications for the carbon cycle

CSIRC

204055 'Sportsmans Ck at Gurranang Siding'

315450 'Forth River above Lemonthyme Power Station'

21 | Rooting dynami

22 | Rooting dynamics a

Koppen climatic classes and fitted rooting depth

no dry season (cool summer)

23 | Rooting dynamics and water fluxes | Randall Donohue

A seasonal implementation of Guswa's model

