Carbon and water fluxes of an arid zone Mulga: some random observations

Derek Eamus, Nicolas Boulain and
James Cleverly

Rainfall was concentrated in the first 7 months of the study period ("wet season")

Soil moisture content at 10 cm responds to small rainfall events

Soil moisture content at 100 cm shows minimal change

$$
\begin{aligned}
& 0
\end{aligned}
$$

181522296132027310172418152229512192629162329162330613202741118251815222961320273101724317
Sept Oct Nov Dec Jan Feb Mar Apr May June Jul Aug

Daily ET rises and falls according to rainfall (ie soil moisture content)

F_{c} peaks in Dec - Mar when soil moisture consistently high and solar radiation and temperatures are high but these aren't the only drivers

MODIS LAI checked with 8 field measurement with reasonable agreement

Field measurements partition overstorey and understorey LAI - largest change occurs in the understorey

Conclusion:

Changes in LAI account for large part of seasonal changes in F_{c} and most of the change occurs in the understory same as NT savannas -but soil crusts might be important too!

Net C uptake except for Nov 2010 and Sept 2011

F_{c} increases with increasing ET

WUE ($F_{d} / E T$) increases as time since last rain increases. What drives this?
(each line is a single rain event)

WUE ($F_{c} / E T$) in the "dry season": WUE decreases with increased D

WUE ($F_{c} / E T$) for the "wet " season: no response to D. D does not drive increased WUE in the wet season (as soil moisture declines $D_{\text {vPD (kPa) }}$ increases)

WUE ($F_{c} / E T$) in the dry season: WUE increases with decreasing soil moisture content

WUE ($F_{c} / E T$) wet season increases with declining soil moisture content

Conclusions about WUE

- In the dry season, changes in WUE driven by D
- In the wet season, changes in WUE driven by soil moisture content

What about Inherent WUE?

- Inherent WUE $=\mathrm{A} / \mathrm{g}_{\mathrm{s}}$
- Since $g_{s}=E / D$ then $A / g_{s}=A /(E / D)=A * D / E=$ WUE*D $=F_{c}{ }^{*} D / E T$
- This is a measure of WUE independent of differential effects of D on ET and F_{c}
- Essentially IWUE is a measure of efficiency of fixing C per unit g_{s}

IWUE increases in the dry season as soil moisture content declines

IWUE increases with increasing D in both wet and dry seasons

Slope of WUE vs $1 /$ sqrt D is proportional to the marginal carbon cost of water - which increases in the dry season

WUE versus 1 /sqrtD wet season

WUE versus $1 /$ sqrt D dry season

Conclusions

- Mulga is highly responsive to rainfall: even 5 mm is sufficient to trigger a response in F_{c} and ET
- WUE is driven by D in the dry season but soil moisture content in the wet season
- IWUE increases with decreasing D in both seasons
- A positive C balance was seen in $10 / 12$ months
- The marginal C cost of water increases in the dry season
- Changes in LAI of the understory are the main causes of seasonal changes in LAI and F_{c}
- Very little drainage past 100 cm depth occurs, even when monthly rainfall was > 120 mm (Feb 2011)

Why is marginal carbon cost of water proportional to 1/sqrtD?
 $$
g_{s}=g_{o}+\left(1+g_{1} / s q r t D\right)\left(A / C_{a}\right)
$$

Where $\mathrm{D}=\mathrm{VPD}$ and g_{1} is a constant that reflects the marginal water cost of carbon and g_{0} is cuticular conductance (assumed to be negligible)

If canopy coupling is high, $\mathrm{E}=\mathrm{g}_{5} \mathrm{D}$
Then $A / E=$ WUE $=C_{a} /\left(g_{1}(\right.$ sqrtD $\left.)+D\right)$

- So plot of WUE versus sqrtD has a slope proportional to the inverse of g_{1} so the slope is proportional to the marginal carbon cost of water

Put another way:

g_{1} is proportional to $\operatorname{sqrt}\left(\Gamma^{*} \lambda\right)$ (Medlyn et al 2012) where Γ^{*} is the compensation point, and λ is the marginal water cost of carbon
and

- $W U E=C_{a} /\left(g_{1}\right.$ (sqrtD)+D)
- So WUE versus sqrtD has a slope proportional to $1 / \lambda$ ie, marginal carbon cost of water

Daily ET declines as the number of days since the last rain increases

