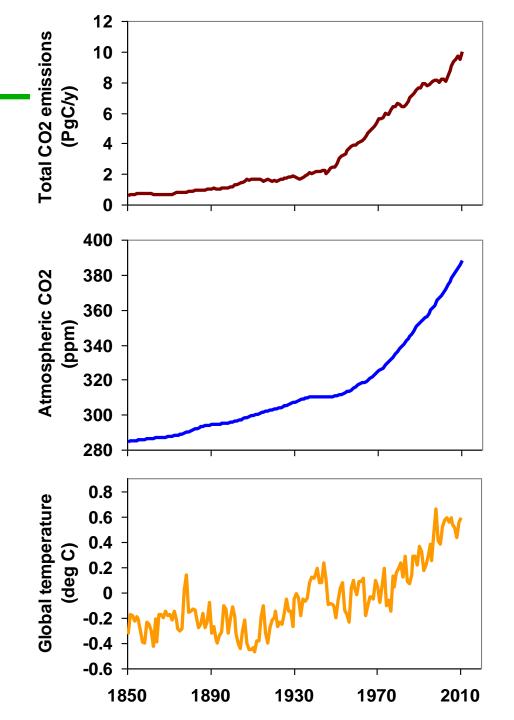
An analytical approach to the coupled carbon-climate-human system

Michael Raupach^{1,2}

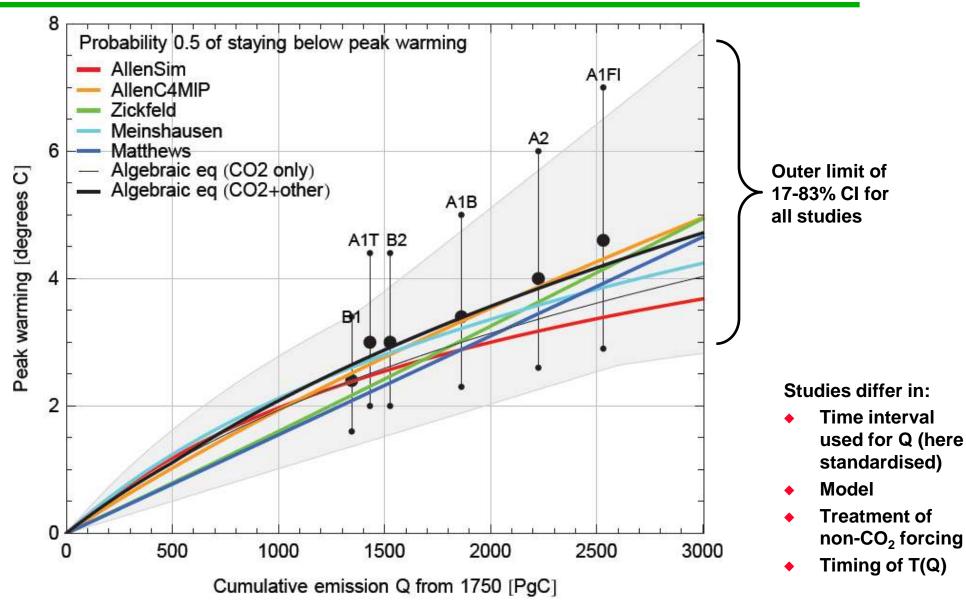
¹Centre for Atmospheric, Weather and Climate Research, CSIRO Marine and Atmospheric Research, Canberra, Australia

²ESSP Global Carbon Project

Thanks: Pep Canadell, Ian Enting, Roger Francey, Paul Fraser, Ian Harman, Vanessa Haverd, Skee Houghton, Corinne Le Quere, Peter Rayner, Hilary Talbot, Cathy Trudinger



Earth system: forcing and responses


 CO₂ emissions (fossil fuels + land use change)

 CO₂ concentrations (composite record)

 Global temperature (land + ocean, HadCRU)

Warming as a function of cumulative CO₂ emissions Synthesis of 5 model studies and IPCC (2007)

Raupach et al. (2011) CAWCR Report 42

Ratios between fluxes and stores

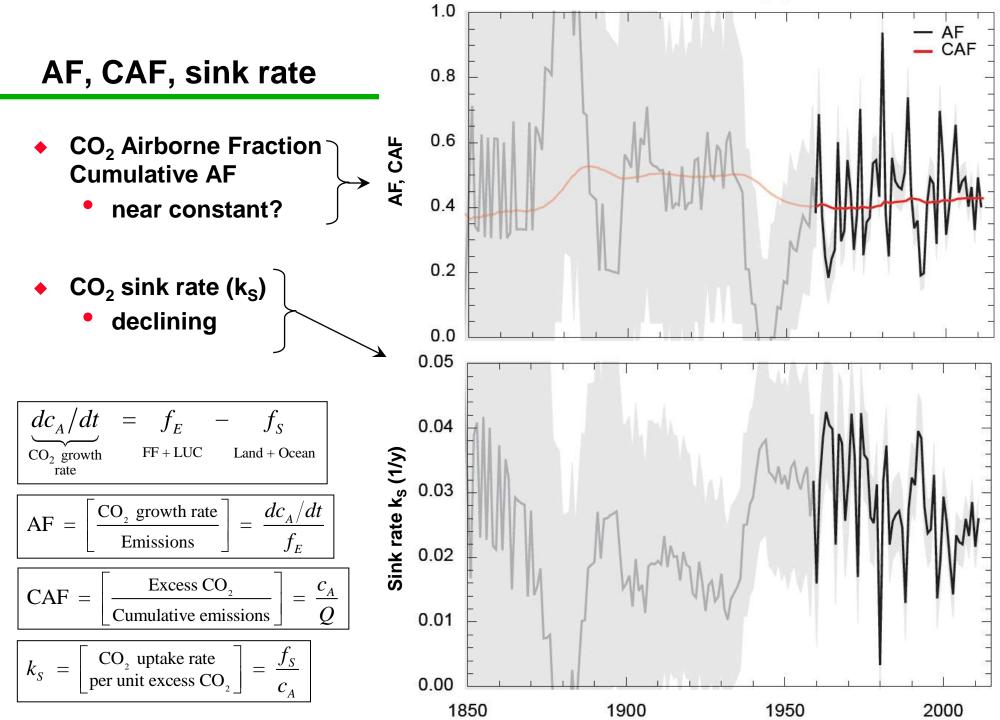
• [Atmospheric CO₂ budget]

• Airborne fraction:

Cumulative AF:

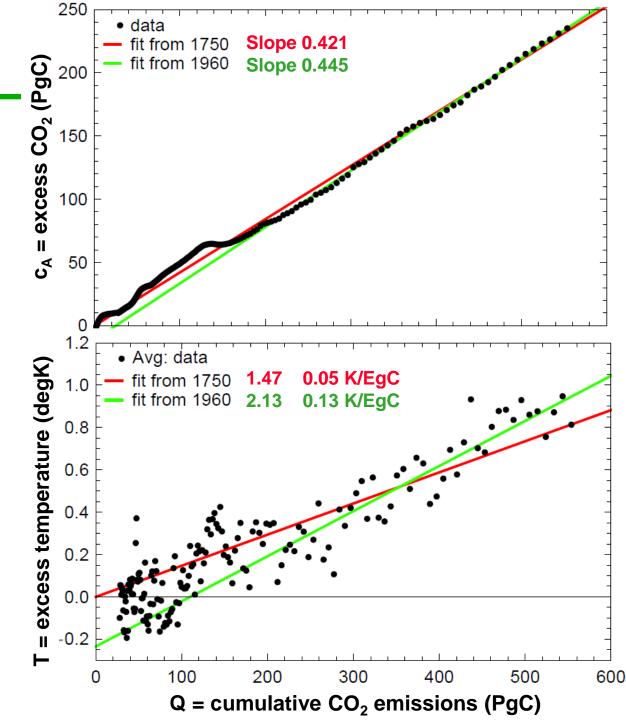
• Sink rate [1/y]:

• T/Q ratio:


$$\underbrace{\frac{dc_A}{dt}}_{\text{CO}_2 \text{ growth}} = f_E - f_S$$
FF + LUC Land + Ocean

$$AF = \left[\frac{CO_2 \text{ growth rate}}{Emissions}\right] = \frac{dc_A/dt}{f_E}$$

$$CAF = \left[\frac{Excess CO_2}{Cumulative emissions}\right] = \frac{c_A}{Q}$$


$$k_{S} = \begin{bmatrix} CO_{2} \text{ uptake rate} \\ \text{per unit excess } CO_{2} \end{bmatrix} = \frac{f_{S}}{c_{A}}$$

$$\left[\frac{\text{Excess temperature}}{\text{Cumulative emissions}}\right] = \frac{T}{Q}$$

CO₂ and T Past data

- c_A = excess CO₂ (PgC)
 c_A = 2.13 (CO₂-280ppm)
- T = excess temperature (ref 1880-1900)
- Q(t) = cumulative CO₂ emissions from 1750
- Plot c_A and T against cumulative CO₂ emissions Q(t)

PAST

- Why are ratios among fluxes and stores (AF, CAF, T/Q) near constant from ~1850 to present, in the face of a 20-fold increase in emissions?
- To the extent that these ratios have changed, why so?

FUTURE

- How will AF, CAF and T/Q behave in future?
 - In particular, do we expect continuance of a near-proportional relationship between T and Q?
 - If so, why?

Linear theory

- Linearise carbon-climate system (deal with nonlinearities later)
- State variables = (carbon pools, temperatures, other gases ...)
 - Dimension (number of state variables) can be as high as we want (10 or 10⁷)
- Linear theory makes available a rich set of analytic resources:
 - Normal modes, Green's functions, transforms (Laplace, Fourier, ...)
- Linear theory provides complementary insights to numerical modelling
- Ways in which linear theory is embedded in climate science:
 - Pulse response functions for CO₂ (ocean mixed layer, atmosphere)
 - Step response functions for climate
 - CO₂ equivalence and Global Warming Potentials

Linear theory

Nonlinear system:

$$\frac{d\mathbf{x} \ t}{dt} = \mathbf{f} \ t + \mathbf{\Phi} \ \mathbf{x}$$
Forcing Response

• Linearised system:

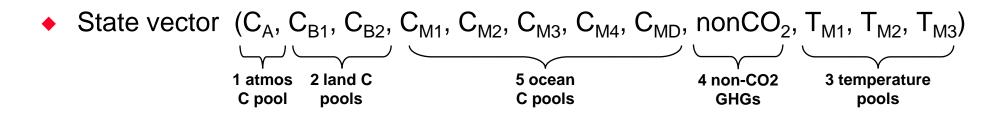
$$\frac{d\mathbf{x} \ t}{dt} = \mathbf{f} \ t - \mathbf{K}\mathbf{x}$$
$$\mathbf{K} = -\frac{\partial \Phi}{\partial \mathbf{x}}$$

d state variables	= forcing	т_	[response]	state]
dt	– Torenig		_ matrix _	variables

- x(t) = vector of state variables (carbon pools, temperatures)
- f(t) = vector of external forcing fluxes
- $\Phi(\mathbf{x})$ = vector of response fluxes
- **K** = linear response matrix = -[Jacobian of $\Phi(\mathbf{x})]$

Insights from linear theory

$$\frac{d\mathbf{x} \ t}{dt} = \mathbf{f} \ t - \mathbf{K}\mathbf{x}$$

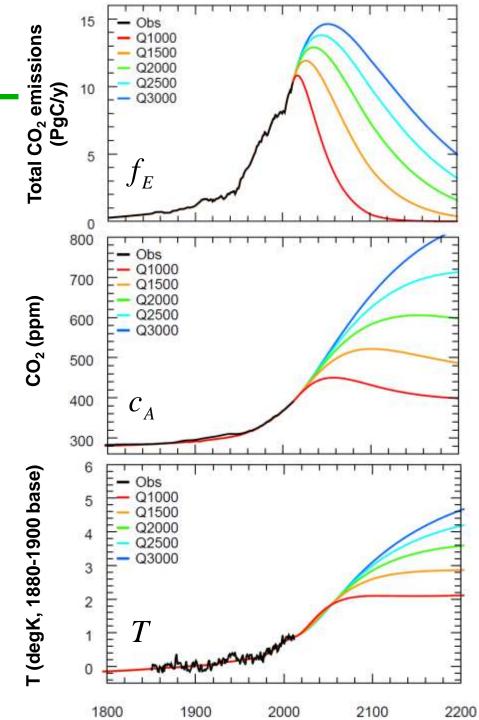

- **Basic fact:** for a linear system (Lin):
 - any exponential function of time is an **eigenfunction** of the system
 - [eigenfunction: forcing and response have the same shape]
- **Theorem:** for a linear system (Lin) with exponential forcing (Exp):
 - All state variables grow at forcing rates (not response rates)
 - All ratios among state variables and fluxes approach constant values
 - These ratios "forget" initial state at forcing rates (not response rates)
- For the carbon-climate system in the LinExp idealisation, we would have
 - $c_{Air}/Q = constant$ $c_{Land}/Q = constant$ $c_{Ocean}/Q = constant$
 - AF = CAF = constant
 - Sink rate k_{S} = constant
 - T/Q = constant

- c_{Air} = anthropogenic C in atmosphere
 - c_{Land} = anthropogenic C in land stores
 - c_{Ocean} = anthropogenic C in ocean stores
 - Q = cumulative anthropogenic C emissions
 - T = perturbation temperature

Nonlinear carbon-climate model

SCCM = Simple Carbon-Climate Model

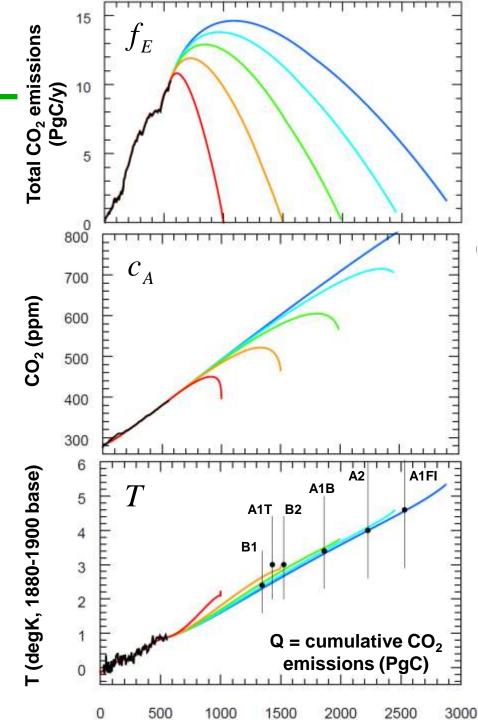
- Raupach et al (2011) Tellus
- Harman, Trudinger, Raupach (2011) CAWCR Report



 Nonlinearities: Radiative forcing is nonlinear in gas concentrations Land and ocean CO₂ fluxes are nonlinear in CO₂, temp Volcanic influence on terrestrial NPP

SCCM results: Vary cumulative emissions

- Plots against time
- Full model
- All forcings (CO₂, CH₄, N₂O, CFCs, aerosols)
- Aerosol RF ~ f_{Foss} (tech factor)
- Analytic scenarios for future emissions trajectories
- All-time cumulative cap on CO₂ emissions Q = 1000 to 3000 PgC


$$Q t = \int_{1750}^{t} f_E \tau d\tau$$

SCCM results: Vary cumulative emissions

- Plots against Q(t)
- Full model
- All forcings (CO₂, CH₄, N₂O, CFCs, aerosols)
- Aerosol RF ~ f_{Foss} (tech factor)
- Analytic scenarios for future emissions trajectories
- All-time cumulative cap on CO₂ emissions Q_E = 1000 to 3000 PgC

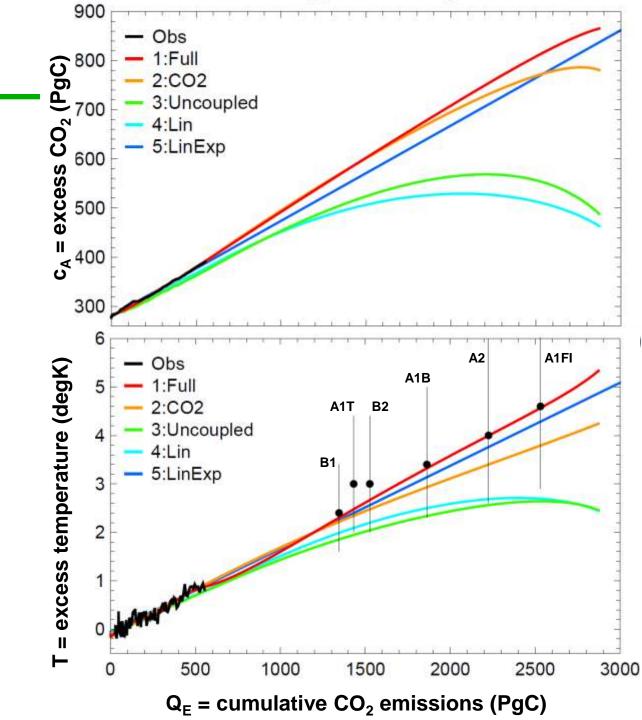
$$Q t = \int_{1750}^{t} f_E \tau d\tau$$

CO₂ and T Attribution of trends

Progressive simplification:

- 1: Full model
- 2: **CO₂ only** (remove non-CO₂ forcing)

3: Uncoupled

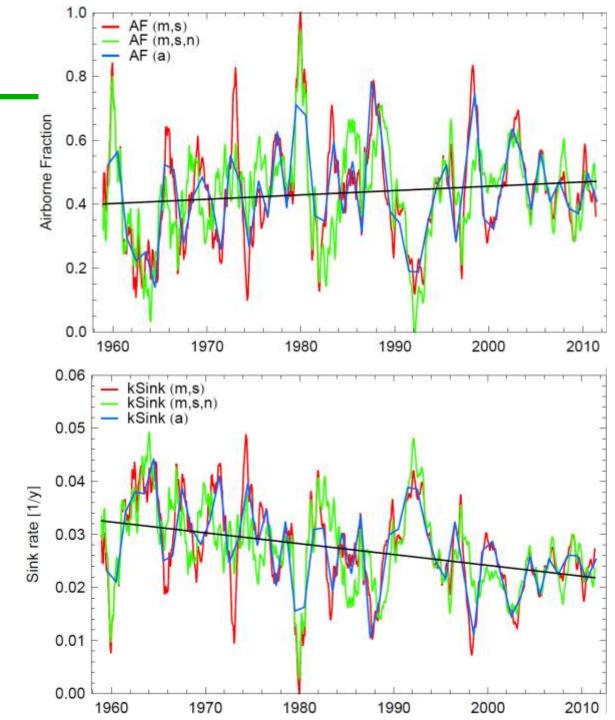

(remove dependence of CO_2 sink fluxes on temperature)

4: Linearised

(remove nonlinearities in CO₂ fluxes and radiative forcing)

5: LinExp

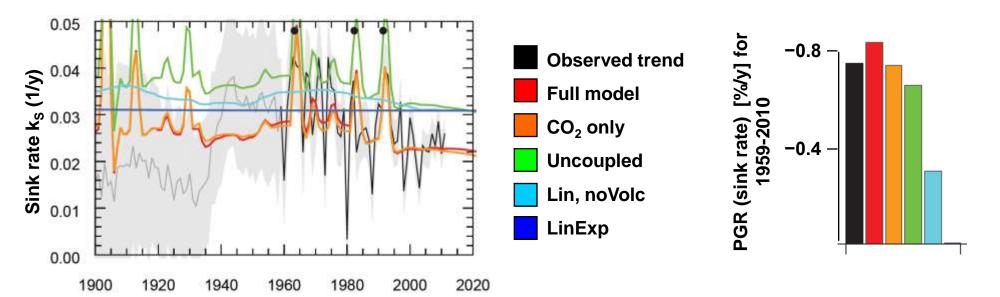
(impose exponential emissions flux)



Past AF and sink rate

 Airborne fraction: Proportional growth rate of AF = 0.3 % y⁻¹ (P=0.8) Canadell et al (2007) Raupach et al (2008) Le Quere et al (2009)

Trend, attribution contested:

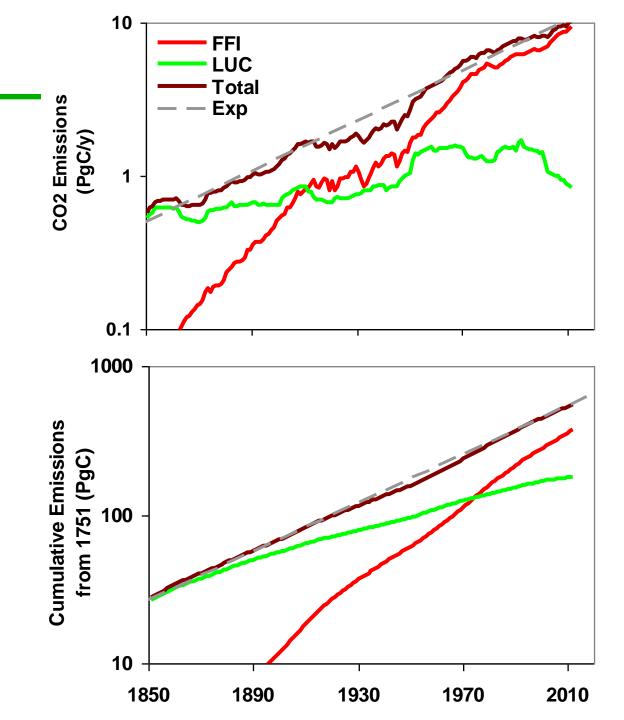

- * Knorr (2009)
- * Gloor et el (2010)
- * Sarmiento et al (2010)
- * Francey (2010)
- CO₂ sink rate: Proportional growth rate of k_s = -0.8 % y⁻¹ (P=0.998)

Attribution of past trend in sink rate (1959-2011)

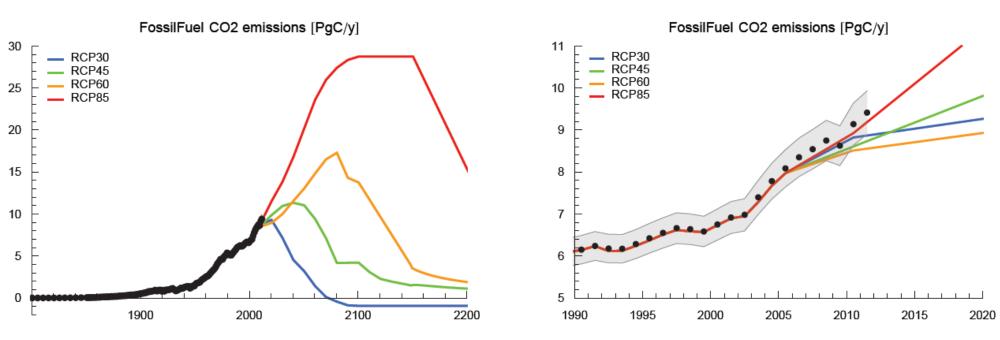
- ◆ Contributions to observed trend in sink (-0.75% y⁻¹ over 1959-2011)
 - Non-CO₂ forcing 12%
 - CO₂-temp coupling 10%
 - Other nonlinear 17%
 - Volcanic effects 25%
 - Non-exp emissions 36%

100%

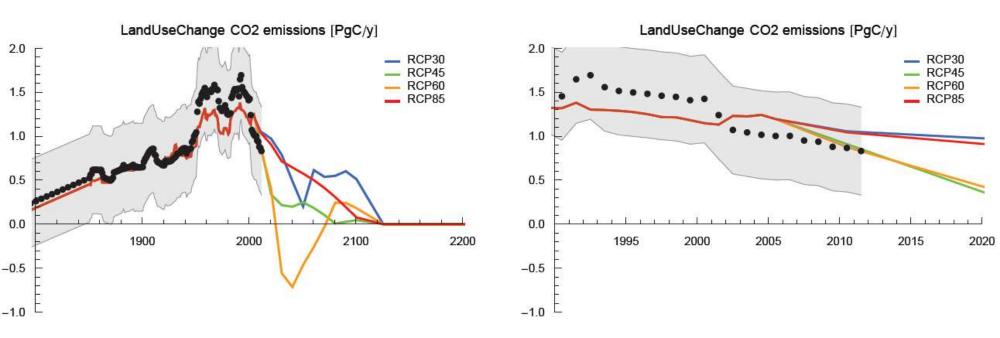
(Some) answers: different for past and future


- PAST
 - Why are ratios among fluxes and stores (AF, CAF, T/Q) near constant from ~1850 to present, in the face of a 20-fold increase in emissions?
 - Because the carbon-climate system has been nearly LinExp: LinExp => exponential eigenmodes, constant ratios
 - To the extent that these ratios have changed, why so?
 - Growth rates 1959-2011: AF +0.3% y^{-1} , $k_s = 0.8\% y^{-1}$
 - 5 contributions: nonCO₂, C-T coupling, volcanoes, nonLin, nonExp
- **FUTURE**
 - How will AF, CAF and T/Q behave? Do we expect continuance of a near-proportional relationship between T and Q? If so, why?
 - Present near-LinExp behaviour will not continue
 - Near-constant T/Q will continue (~1.8 K EgC⁻¹; range 1.4 to 2.4)
 - nonCO₂ and C-T coupling will override nonExp emissions
 - BTW: chances of avoiding (2K, 3K) warming = (nil, slight)

CO₂ emissions


- Total CO₂ emissions (FF + LUC) are growing nearly exponentially
 - FF acceleration
 - LUC slowdown

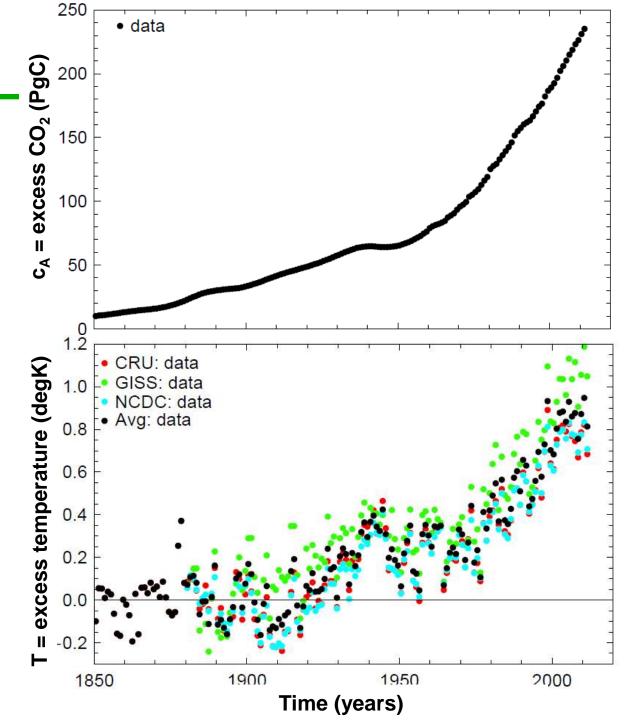
- Also, cumulative CO₂ emissions are growing nearly exponentially
- For total CO₂ emissions:
 - Growth rate = 1.9%/y
 - Doubling time = 53 y


Global CO₂ emissions from fossil fuels

- Error band in plot: 1SD relative error = 0.055 (time independent)
- Assumed growth in FFI emissions from 2010 to 2011 = 3.0% (2001-2010 average)
 - (IEA gave 3.2% for FF only on 24-may-2012) (http://www.iea.org/newsroomandevents/news/2012/may/name,27216,en.html)

Global CO₂ emissions from Land Use Change

- Error band in plot: 1SD absolute error = 0.5 PgC/y (time independent)
- Assumed growth in LUC emissions from 2010 to 2011 = -4.0% (2001-2010 average)



CO₂ and T Past data

Excess CO₂ (PgC) =
 2.13 (CO₂ - 280 ppm)

 Excess temperature = warming (ref 1880-1900)

Plot against time

Linear time-invariant system: normal modes

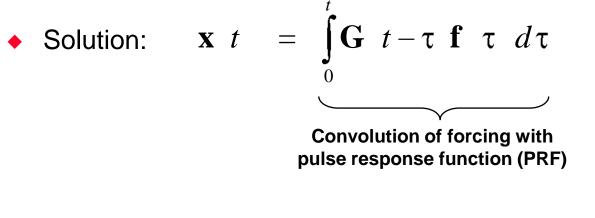
• Linear system:

$$\frac{d\mathbf{x} \ t}{dt} = \mathbf{f} \ t - \mathbf{K}\mathbf{x} \ t \ ; \quad \mathbf{x} \ \mathbf{0} = \mathbf{0}$$

with state variables $\mathbf{x}(t)$, forcing $\mathbf{f}(t)$, constant response matrix \mathbf{K}

Eigenmodes of K:

$$\mathbf{K}\mathbf{U} = \mathbf{U}\boldsymbol{\Lambda}, \qquad \mathbf{K} = \mathbf{U}\boldsymbol{\Lambda}\mathbf{U}^{-1}$$


• For a stable system, eigenvalues are negative for all modes m: $\lambda^{\,m} < 0$

- Transformed variables:
- Diagonalised system of independent variables:

$$\mathbf{y} \ t = \mathbf{U}^{-1}\mathbf{x} \ t$$
, $\mathbf{x} \ t = \mathbf{U}\mathbf{y} \ t$

$$\frac{d\mathbf{y} t}{dt} = \mathbf{U}^{-1}\mathbf{f} t - \mathbf{A}\mathbf{y} t ; \quad \mathbf{y} \ \mathbf{0} = \mathbf{0}$$

Linear time-invariant system: solution

Pulse Response Function (PRF):

$$\mathbf{G} \quad t = \mathbf{E} \mathbf{x} \mathbf{p} - \mathbf{K} t = \mathbf{U} \mathbf{E} \mathbf{x} \mathbf{p} - \mathbf{\Lambda} t \quad \mathbf{U}^{-1}$$

$$\underbrace{\mathbf{W}}_{\mathbf{M} \mathbf{t} \mathbf{r} \mathbf{x} \mathbf{t} \mathbf{x} \mathbf{p} \mathbf{o} \mathbf{n} \mathbf{e} \mathbf{t} \mathbf{t}}_{\mathbf{M} \mathbf{t} \mathbf{r} \mathbf{x} \mathbf{t} \mathbf{x} \mathbf{p} \mathbf{o} \mathbf{n} \mathbf{n} \mathbf{t} \mathbf{t} \mathbf{t}}$$

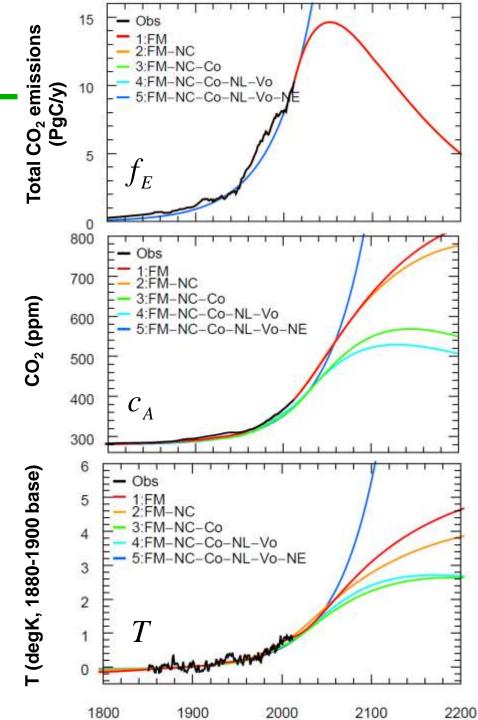
Elements of PRF matrix are sums of exponentials, each from a mode m

decay rates are eigenvalues, weight factors are given by eigenvectors

$$G_{ij} t = \sum_{m} a_{ij}^{m} \exp -\lambda^{m} t$$
, $a_{ij}^{m} = \mathbf{U}_{im} \mathbf{U}^{-1}_{mj}$

Linear time-invariant system with exponential forcing

• Forcing flux vector: $\mathbf{f} \ t = f_0 \exp r_1 t$, 0, 0, ...

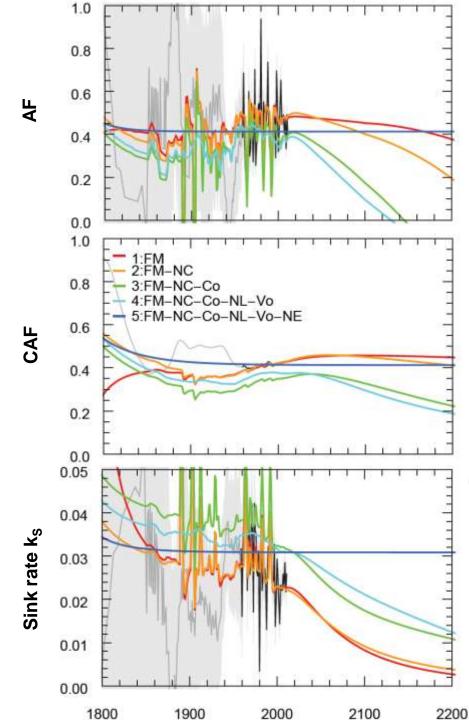

• Solution for pool i:
$$x_i t = \sum_{m} \frac{a_{i1}^m f_0}{r_1 + \lambda^m} \left[\exp r_1 t - \exp \lambda^m t \right]$$

Eigenfunction

- With exponential forcing, forcing and response have same shape: everything grows as exp(r1t)
- => Theorem: for linear system (L) with exponential forcing (E):
 - All state variables grow at forcing rates (not response rates)
 - All ratios among state variables and fluxes approach constant values
 - These ratios "forget" initial state at forcing rates (not response rates)

SCCM results: Progressively simplify model

- Model versions:
 - 1: Full model (FM)
 - 2: CO₂ only (remove non-CO₂ forcing = NC)
 - 3: Uncoupled (remove CC coupling = Co)
 - 4: Linearised (remove nonlinearities in CO₂ fluxes and radiative forcing)
 - 5: LinExp


(impose exponential CO₂ emissions)

SCCM results: Progressively simplify model

- Model versions:
 - 1: Full model (FM)
 - 2: CO₂ only (remove non-CO₂ forcing = NC)
 - 3: Uncoupled (remove CC coupling = Co)
 - 4: Linearised (remove nonlinearities in CO₂ fluxes and radiative forcing)
 - 5: LinExp

(impose exponential CO₂ emissions)

