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Soils & non-CO2 exchange



• Non-CO2 gases rarely included in global C budgets, 
• Sources and sinks not well understood.

• CO2 represents < 50% of current atmospheric radiative forcing.

• b

Global C cycle and non-CO2

Houghton et al., 
(2001)

Methane (CH4) and 
Nitrous oxide (N2O) 
represent ~25% of 
radiative forcing.



• Global warming potential (GWP) relates all GHG’s to the 
radiative forcing of CO2, based on absorbtion of radiation 
and persistence in atmosphere.

Pre-ind. Current GWP
CO2 280 375   1
CH4 0.80 1.78   21
N2O 0.28 0.31   310

• Carbon dioxide equivalents (CO2-e), normalise all gases 
to that of CO2 using their GWP.

Global C cycle and non-CO2



• Both CH4 and N2O sink-source mechanisms are vulnerable to 
human interference and feedback responses.

• A multi-gas approach is necessary. (Robertson et al., 2000)

e.g - N fertiliser may increase crop NPP and C sink.  (Crutzen 2008)

BUT this may be offset by concurrent N2O emissions.

• An Imbedded or System CO2-e cost should be considered, 

e.g. the C cost of fertiliser manufacture.

• CO2 CH4 N2O

Global C cycle and non-CO2
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Manual
- low temporal
- high spatial
- low flux
- CO2, N2O & CH4

Automated
-high temporal
- low spatial
- low flux
- CO2, N2O & CH4

Mass balance
Eddy covariance
Flux gradient
- high temporal resolution
- low spatial
- medium-high fluxes
- CO2, CH4 ?, N2O ??

Measuring soil GHG exchange

Chambers Open

Denmead 2008
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Closed chambers

• Non-steady state (i.e. conc. Increase)

CO2 / CH4

Flow-through
‘dynamic’

GCNon flow-through
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Open chambers

• Steady state (i.e. conc. stable)

• Constant flow of air maintained through the headspace 
• The difference in concentration between the air in and out is measured.
• Good – as gas concentration increase minimal and not inhibitory
• Bas – when gas flux is small, therefore difference negligible

CO2 / CH4 / N2O
flow 
meter

pump

reference



Chamber flux calculation

Closed chamber
• Flux volume (Fv) as µL m-2 h-1 can be calculated from:

Fv = ( V / A ) ∆g / ∆t

where V is volume (m3), A is surface area (m2), ∆g is gas concentration 
change (ppm), and ∆ t is the period of time (h) for that change.

• Universal gas law converts Fv (µL m-2 h-1) to flux density (Fg) µMol m-2 h-1

• Requires data of air temperature and atmos. pressure (altitude).

Open chamber
• Flux density (Fg) as uMol m-2 h-1 can be calculated from:

Fg = v ( ρg,out – ρg,in ) / A 

where v is flow rate (m-3 h-1) and ρg,out or ρg,in are µMol m-3

Denmead 2008

Parkin et al. 2003



Issues & solutions for chambers

1. Soil Disturbance
• Use temporary/portable chambers.
• Install permanent chamber collars at least 24 h prior to flux measure
• Collars should be short to minimise above and below-ground perturbation.

2. Temperature increase: 
Can Influence biological activity & physical absorption or dissolution of dissolved gasses.

• Use insulated, reflective chambers.
• Keep deployment time as short as possible.

3. Pressure perturbations: 
Wind may cause pressure-induced mass flow over chamber collar
Closed chamber may reduce natural mass flux.

• Use vented chamber
• Use skirted chambers

4. Increased humidity
Gas solubility changes but probably a minor effect
Humidity increases may dilute the gas of interest, underestimating the flux

• Keep chamber deployment short
• Relative humidity can be measured to correct for dilution effects from water vapour.

(Mosier 1989; Matson & Harris 1995; Denmead 2008) 



Issues & solutions for chambers

5. Diurnal variation in soil gas flux can follow diurnal temperature, but not universal.
Inter-daily variation may be high due to rainfall, fertility, tillage or freeze thaw events.
Seasonal variation (Spring and Winter fluxes can be substantial).

• Measure flux at the time of day that most closely represents daily mean (~ mid morning)
• Temperature correct measured fluxes when temperature bias may occur.
• Measure fluxes 3 to 4 times a week, all year long (wow !! )
• Stratify sampling to take account of episodic events (e.g. summer rainfall).

6. Spatial variability
Coefficients of variation commonly exceed 100%.

• Use chambers with larger surface area footprint to minimize small scale variability.
• Use as many chambers as possible.

7. Gas Mixing
Assumed molecular diffusion is sufficient to homogenise gas concentrations. 
This may not hold with large vegetation present or large volume:surface area.

• Pump the syringe repeatedly before sampling from the headspace
• Fit chambers with small fans – a 12 VDC computer fan.



Especially when soil fluxes are low, it is important to know the
minimum detection limit (MDL). 

A function of :
• sampling precision
• analytical precision 
• chamber volume and surface area. 

Sampling + analytical precision determined from SD of ~ambient 
standards (n>20). 
± 2 SD provides sampling + analytical precision .

MDL = x2 SD * volume (L) / area(m2) / deployment time (min)

Minimum detectable limit



Situations favouring chambers



Mornington Peninsula, VIC



Closed chamber fluxes



Automated chambers

Generator

Gas sampling system Gas chromatograph

Ch 1

Ch 7 Ch 8 Ch 9 Ch10Ch 6

Ch 2 Ch 3 Ch 4 Ch 5

IRGA ECD FID

Laptop

CO2
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Diurnal N2O and CH4 flux

• Diurnal temperature cycle affects N2O 
and CH4 emissions, but has little effect 
on CH4 oxidation.



S J Livesley, Univ. of Melbourne 15/05/2007

• Seasonal shift in CH4 uptake rates

• Strong seasonal shift in N2O emission

• Good correlation between flux and soil moisture.

Kiese et al., 
(2003) & (2005)

Seasonal N2O and CH4 flux



Fertiliser
 applied
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Fertiliser and forest N2O and CH4 flux

Annual fertiliser since 1998 @ 
200 kg N, 60 kg P ha-1

N2O flux small 
(<20 µg N m-1 hr-1)
Despite large NO3 and NH4

pools, up to 250 mg N kg-1.

X4 less CH4 uptake with N 
fertiliser.



CH4 and N2O mitigation opportunities

• There are few opportunities to increase non-CO2 sinks, 
except through enhanced CH4 uptake with agricultural 
abandonment or active afforestation – benefit small

• Mitigation of CH4 and N2O flux rests solely at managing 
the natural and anthropogenic sources.


