

Measuring N₂O and CH₄ exchange between the soil and atmosphere

Stephen Livesley Department of Forest and Ecosystem Science

Key references:

Matson & Harriss (1995) Biogenic trace gases: measuring emissions from soil & water

Denmead (2008) Plant and Soil 309

Parkin et al. (2003) http://gracenet.usda.gov/GRACEnetTraceGasProtocol.pdf

Soils & non-CO₂ exchange

- N_2O and CH_4 , GWP and CO_2 -e
- Processes controlling N₂O & CH₄ flux
- Ways to measure N₂O and CH₄ flux
- Chamber measurement approaches
- Chamber measurement issues
- Examples of N₂O & CH₄ flux measures
- Conclusions

Global C cycle and non-CO₂

- Non-CO₂ gases rarely included in global C budgets,
- Sources and sinks not well understood.
- **CO**₂ represents < 50% of current atmospheric radiative forcing.

Global C cycle and non-CO₂

• **Global warming potential** (**GWP**) relates all GHG's to the radiative forcing of CO₂, based on absorbtion of radiation and persistence in atmosphere.

	Pre-ind.	Current	GWP
CO ₂	280	375	1
CH ₄	0.80	1.78	21
N ₂ O	0.28	0.31	310

• **Carbon dioxide equivalents** (**CO**₂-**e**), normalise all gases to that of CO₂ using their GWP.

Global C cycle and non-CO₂

- Both CH₄ and N₂O sink-source mechanisms are vulnerable to human interference and feedback responses.
- A multi-gas approach is necessary. (Robertson et al., 2000)

e.g - N fertiliser may increase crop NPP and C sink. *(Crutzen 2008)* BUT this may be offset by concurrent N₂O emissions.

• An **Imbedded** or **System** CO₂-e cost should be considered,

e.g. the C cost of fertiliser manufacture.

Measuring soil GHG exchange

Chambers

Manual

- low temporal
- high spatial
- low flux
- CO2, N2O & CH4

Open

Mass balance Eddy covariance Flux gradient

- high temporal resolution
- low spatial
- medium-high fluxes
- CO₂, CH₄ ?, N₂O ??

Denmead 2008

Automated

-high temporal

- low spatial
- low flux
- CO₂, N₂O & CH₄

• Steady state (i.e. conc. stable)

- Constant flow of air maintained through the headspace
- The difference in concentration between the air in and out is measured.
- Good as gas concentration increase minimal and not inhibitory
- Bas when gas flux is small, therefore difference negligible

Chamber flux calculation

Closed chamber

Parkin et al. 2003

• Flux volume (F_v) as $\mu L m^{-2} h^{-1}$ can be calculated from:

 $F_v = (V / A) \Delta_g / \Delta t$

where V is volume (m³), A is surface area (m²), Δ_g is gas concentration change (ppm), and Δt is the period of time (h) for that change.

- Universal gas law converts F_v (μ L m⁻² h⁻¹) to flux density (F_q) μ Mol m⁻² h⁻¹
- Requires data of air temperature and atmos. pressure (altitude).

Open chamber

• Flux density (F_g) as uMol m⁻² h⁻¹ can be calculated from:

$$\mathsf{F}_{\mathsf{g}} = v \left(\rho_{\mathsf{g},out} - \rho_{\mathsf{g},\mathsf{in}} \right) / \mathsf{A}$$

where v is flow rate (m⁻³ h⁻¹) and $\rho_{g,out}$ or $\rho_{g,in}$ are μ Mol m⁻³

Denmead 2008

Issues & solutions for chambers

1. Soil Disturbance

(Mosier 1989; Matson & Harris 1995; Denmead 2008)

- Use temporary/portable chambers.
- Install permanent chamber collars at least 24 h prior to flux measure
- Collars should be short to minimise above and below-ground perturbation.

2. Temperature increase:

- Can Influence biological activity & physical absorption or dissolution of dissolved gasses.
- Use insulated, reflective chambers.
- Keep deployment time as short as possible.

3. Pressure perturbations:

Wind may cause pressure-induced mass flow over chamber collar Closed chamber may reduce natural mass flux.

- Use vented chamber
- Use skirted chambers

4. Increased humidity

Gas solubility changes but probably a minor effect

Humidity increases may dilute the gas of interest, underestimating the flux

- Keep chamber deployment short
- Relative humidity can be measured to correct for dilution effects from water vapour.

Issues & solutions for chambers

- Diurnal variation in soil gas flux can follow diurnal temperature, but not universal.
 Inter-daily variation may be high due to rainfall, fertility, tillage or freeze thaw events.
 Seasonal variation (Spring and Winter fluxes can be substantial).
- Measure flux at the time of day that most closely represents daily mean (~ mid morning)
- Temperature correct measured fluxes when temperature bias may occur.
- Measure fluxes 3 to 4 times a week, all year long (wow !!)
- Stratify sampling to take account of episodic events (e.g. summer rainfall).

6. Spatial variability

Coefficients of variation commonly exceed 100%.

- Use chambers with larger surface area footprint to minimize small scale variability.
- Use as many chambers as possible.

7. Gas Mixing

Assumed molecular diffusion is sufficient to homogenise gas concentrations. This may not hold with large vegetation present or large volume:surface area.

- Pump the syringe repeatedly before sampling from the headspace
- Fit chambers with small fans a 12 VDC computer fan.

Minimum detectable limit

Especially when soil fluxes are low, it is important to know the minimum detection limit (MDL).

A function of :

- sampling precision
- analytical precision
- chamber volume and surface area.

Sampling + analytical precision determined from SD of ~ambient standards (n>20).

± 2 SD provides sampling + analytical precision .

MDL = x2 SD * volume (L) / area(m²) / deployment time (min)

Situations favouring chambers

Mornington Peninsula, VIC

Closed chamber fluxes

Autumn 2009

Winter 2009

Diurnal N₂O and CH₄ flux

Seasonal N₂O and CH₄ flux

Fertiliser and forest N₂O and CH₄ flux

Annual fertiliser since 1998 @ 200 kg N, 60 kg P ha⁻¹

N₂O flux small $(<20 \ \mu g \ N \ m^{-1} \ hr^{-1})$ Despite large NO₃ and NH₄ pools, up to 250 mg N kg⁻¹.

X4 less CH₄ uptake with N fertiliser.

CH₄ and N₂O mitigation opportunities

- There are few opportunities to increase non-CO₂ sinks, except through enhanced CH₄ uptake with agricultural abandonment or active afforestation – <u>benefit small</u>
- Mitigation of CH₄ and N₂O flux rests solely at managing the natural and anthropogenic sources.