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Essential concepts in atmospheric structure, stability & 
turbulence statistics



Motivation

Micro-
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• At flux towers, we use measurements of 
the turbulent wind and concentration 
fields to infer surface exchange. 

• A basic understanding of boundary layer 
structure is essential to understand and 
interpret the measurements.

• In this lecture we cover:

� Basic states of the atmospheric 
boundary layer

� Basis of eddy-covariance method for 
flux measurements

� Atmospheric stability in the surface 
layer

� Some essential turbulence statistics
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Daytime Convective Boundary Layer (CBL)

4.5 ms -1

well mixed zi = 1400 m

large thermal 
convection
eddy

Tarong, Queensland (AUS), stack height: 210 m, zi = 1400 m, w* = 2.5 ms-1. Photo: Geoff Lane, CSIRO (AUS)

• Looping plume, in the presence of large convective thermal eddies
• Lifting limited by capping inversion; free troposphere above
• Well mixed conditions downwind, in mixed layer of  ~1400 m depth

f r e e   t r o p o s p h e r e
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Nocturnal Boundary Layer (NBL)

Nighttime Stable Boundary Layer

• Early morning, steam fog indicates surface inversion
• “fanning” plume from 75 m stack indicates strong stability, flow from right
• “coning” plume from 150 m stack indicates neutral stability, flow from left
• In between, strong wind direction shear

Salem (Mass.) on a very cold February morning. Photo: Ralph Turcotte, Beverly Times

steam fog

fanning plume

coning plume

h ~ 150 – 200 m

, h ≈ 150 - 200 m
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Tsutomu WATANABE

Atmospheric turbulence has structure at 
multiple spatial scales
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Atmospheric turbulence has structure at 
multiple scales



•Mechanical mixing
�as the air flows over a rough surface due to dynamic instability of 
the large wind shear that develops in the lowest layer

•Buoyant or convective mixing
�Air flow over a warmer underlying surface - unstable
�Air flow over colder surface - stable  

•Water vapour is lighter than dry air
�surface evaporation also contributes to buoyancy of the air.

Mechanisms of turbulence generation
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Mechanisms of turbulence generation

Buoyant production/destruction

Stable: buoyancy suppresses
mechanical production

Unstable: buoyancy augments
mechanical production
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Logarithmic layer

Lowest ~ 10% of ABL 

Constant fluxes

Strong gradients in:

� wind speed, temperature, other scalars

Controlling length scale 

� distance to the surface, z (or z - d)

Controlling velocity scale 

� Friction velocity, u*
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The neutral logarithmic velocity profile
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Modifications to the neutral log law (1)

Tall roughness: displacement height d
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Modifications to the neutral log law (2)
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M-O similarity – θ & u profiles
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Roughness sublayer (RSL)

RSL influenced by the underlying surface through: 
• windspeed inflection instability
• source/sink distribution

RSL extends from the canopy top to 2–3 x hc
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Coupled log, roughness & canopy layers
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Eddy fluxes
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Fluctuations in vertical 
windspeed work on 
gradients of horizontal 
windspeed & scalars



Eddy covariance is about analysing signals 
generated by atmospheric turbulence

w’T’ covariance



Some notation
Reynolds decomposition & time averages
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Statistics – time domain
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Variance – a measure of how a signal varies about its mean

Covariance – a measure of how the product of two signals 

vary about their respective means



Statistics – frequency domain
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(Co)variance is area under 
the (co)spectral density 
curve

S
θ

= contribution of total variance per unit dn
Cwθ = contribution of total covariance per unit dn



Computing covariance – amplitude attenuation

Larry Jacobsen, CSI



Computing covariance – signal time delay (1)

Larry Jacobsen, CSI



Computing covariance – signal time delay (2)

Larry Jacobsen, CSI



Spectral decomposition

•We can decompose any signal into a sum of cosines 
with varying amplitude, frequency and phase
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Square wave - time domain



Variance in frequency domain

Larry Jacobsen, CSI
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Frequency scaling
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Frequency scaling
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Spectra & cospectra depend on stability z/L
sp

ec
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Summary

•Atmospheric surface layer = log + roughness sublayers
� Occupies lowest 10% of the ABL
� Fluxes ~ constant
� Strong gradients wind speed, temperature & other scalars
� Controlling scales

•Turbulence has structure, generated by mechanical and 
buoyancy forces

•Need to understand statistics of variances and 
covariances in both time and frequency domains

� Important for EC system design and good measurements

•Atmospheric (co)spectra scale with

•(Co)spectra are stability dependent
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