
Thoughts on Flux Tower Design

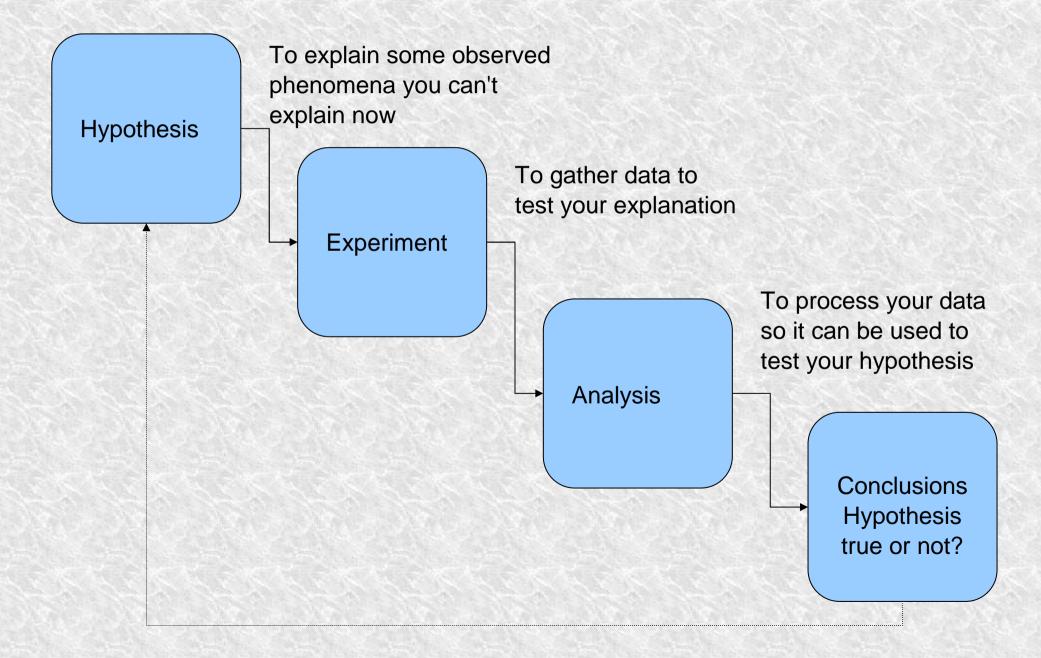
Peter Isaac with Jason, Lindsay, Darren, Steve, Sam, Carol, Reza, Richard and everyone else

Survey

- Who does not have a flux tower?
 - Who intends to install one this year?
- Who already has at least 1?
- Who has at least 2?
- Who has at least 3?
- 4? 5? 6? More?
- Who can't remember?

Outline

- What are we doing and why?
- What are the most important design criteria?
- Exercise in design
- Location, fetch and footprint
- Tower type and height
- Instrument suite, mounting and orientation
- Power and communications


Things That Will Be Covered

- A basic TERN/OzFlux flux tower
- Factors that affect
 - Design of facility
 - Choice of instruments
 - Choice of mounting height
 - Choice of location

Things That Will Not Be Covered

- Specialist or specialised systems
 - Non-CO₂ greenhouse gases
 - Profile systems in canopy
 - Slow response CO₂ systems
 - Respiration (chambers) measurements
 - PAR, total and diffuse radiation components
 - Ancillary data

The Scientific Method

Steps In Design

- Decide what data is required to test your hypothesis
- Decide the accuracy to which it is required
- Decide on the instruments, tower and data collection program to gather the required data to the required accuracy
- Iterate over the objectives and the number and quality of instruments until the budget balances

What Data Is Required?

- Depends on the hypothesis being tested
 - Generic hypothesis chosen for presentation
 - "Observations of CO2 and H2O fluxes can be used to parameterise a LSM to predict continental scale carbon and water budgets"

What Accuracy Is Required?

- Depends on the hypothesis being tested?
- What accuracy do modellers require for parameterisation and validation?
 - What accuracy do hydrologists require?
 - What accuracy do ecologists require?
- What accuracy can micro-meteorologists supply?

What Data Collection Rate Is Needed?

- Data collection rate before quality control
 - 95%, 90%, 80% ... ?
- Data collection rate after quality control
 - 90%, 70%, 50% ... ?
- High data collection rates can be expensive
 - High quality equipment
 - Redundant instruments
 - Resources for quick response to problems
 - Near-real time data retrieval via modem or similar

What Budget Is Available?

- How much money will it cost?
- Does the group have the people?
- Do the people have the skills?
- What else could you do with the money?

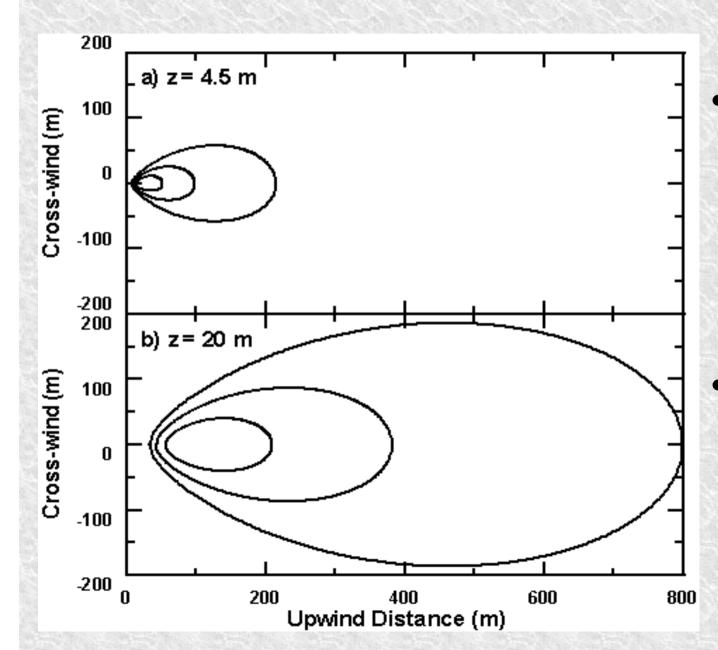
This is usually the bottom line

An Exercise

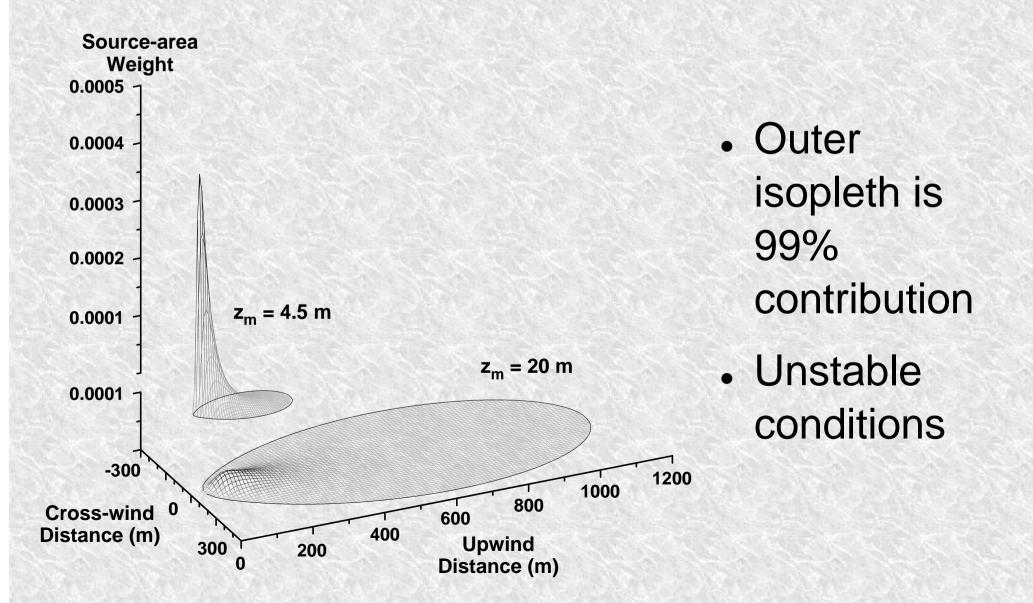
- Decide now if you are going to:
 - Use flux tower data to run models
 - Use flux tower data directly to interpret ecosystems
 - Use flux tower data to study micro-meteorology
 - Provide flux tower data to the other 3
- Separate into 4 groups as above
- Discuss the accuracy you require or can deliver
 - Radiation
 - Sensible heat, latent heat and CO2 fluxes
- Report back in 10 minutes

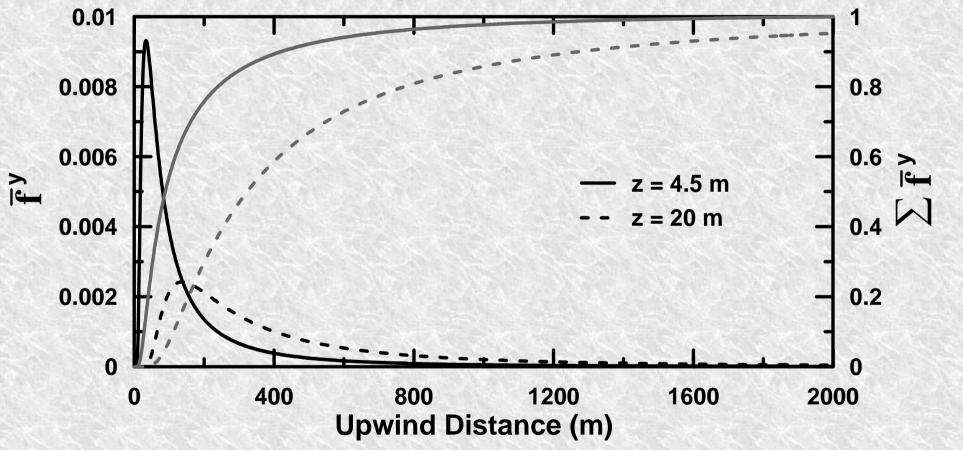
General Guides: Location

- Land use appropriate for hypothesis
- Minimise terrain slope, maximise upwind fetch
- Vehicle access (airboats OK)
- All else is a bonus
 - Proximity to mains power
 - Proximity to home
 - NextG coverage



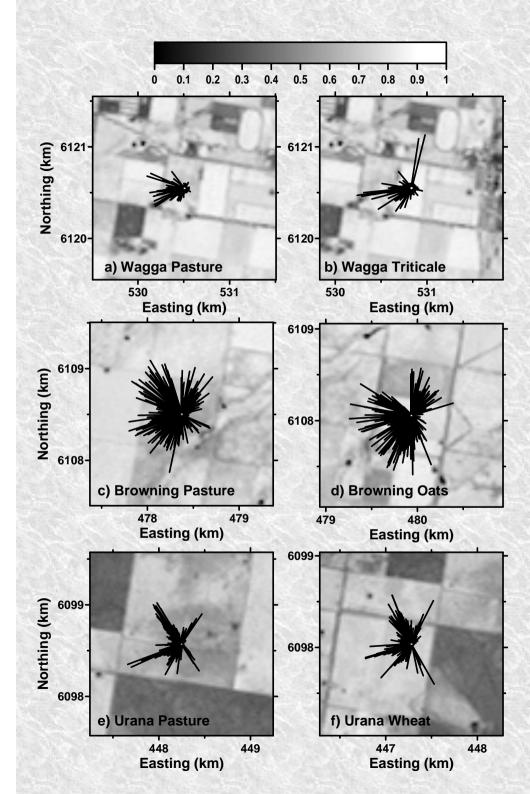
Instrument Footprint


2D Footprint


 Isopleths of contribution to measured flux (80%, 50% and 20%)

Unstable conditions

3D Footprint



Cross-wind Integrated Source-area Weight Function

Unstable conditions

• L = -30m, $u_* = 0.5m/s$, $z_0 = 0.03m$, $z_m = 4.5m$, 20m

Upwind Fetch

- Landsat 5 NDVI
- Radial arms indicate upwind extent of 80% contribution
- Unstable and stable conditions

• Z_m ~ 2m

Tower

- Must remain upright at all times
 - Kinglake (twice), Fogg Dam, Dry River
- Must be safe and easy to work on
- Must get instruments to correct height
- Type can be
 - Open lattice guyed tower
 - Walk-up tower

How High is High Enough?

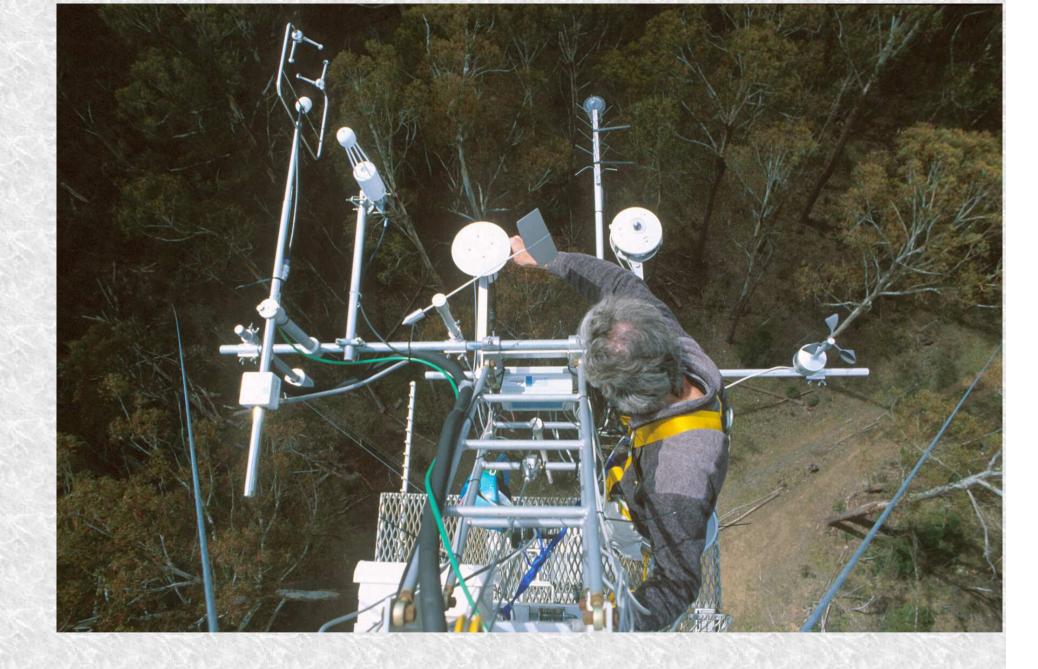
- Surface layer depth z_s
 - Somewhere between |z/L| < 1 2 and $0.1z_i$
- Roughness sublayer depth z_r
 - Up to twice canopy height
- Ideally want to be above z_r and below z_s
- What if instruments below z_r ?
 - Katul et al (1999), BLM, 93, 1-28
 - "When comparing net carbon uptake and water budgets between different ecosystems derived from single-tower measurements within each system, it is necessary to interpret budget differences that are less than 20% with great caution"

How Low is Too Low?

- Twice canopy height (see previous slide).
- Five times canopy height if canopy patchy.
- Not less than 5 times path length, preferably more than 18 times.
- Loss of high frequency contribution to fluxes.
 - Burba and Anderson, "Introduction to the Eddy Covariance Method: General Guidelines and Conventional Workflow", Li-Cor Biosciences

Instrument Suite

- Instrument suite determined by the hypothesis
- Balance between accuracy, reliability and budget
- Redundant instruments improve data collection
- Pairing fast and slow instruments improve data quality
 - LI-7500 and HMP45 for water vapour
- TERN/OzFlux instrument suite neglects some important terms
 - CO₂ accumulation in canopy at night and loss through drainage flows
 - Slow CO₂ measurement at LI-7500 height


Instrument Mounting

- Method should be easy to use, keep instruments stable and level when moved from maintenance to measurement position.
- Sonic/IRGA separation should be minimised without causing flow distortion around sonic.
- Avoid the shadow (wind and light) of the tower
 - Above tower top is good
- Raingauge above canopy, another at ground level

Monash/CDU

CMAR Tumbarumba

Instrument Orientation

- Radiation sensors point north (in SH)
 - Avoid shadow of tower
- Orient sonic into predominant wind direction
 - Minimise flow through tower
 - Mike Liddell has examined this
- Acceptance angle for sonic anemometer?
 - Does anyone reject outside this?
 - Does anyone use 2 sonics?

Calibration And Maintenance

- LI-7500 calibrated every few months
 - In the laboratory
 - CO₂ span gas at +/- 1ppm
 - LI-Cor 610 dew point generator
- CSAT calibrate/repair every 2 3 years
 - Transducer pitting, electronics
- CNR1/4 re-calibrated every 2 years
- HMP45 re-calibrated every year
- Replace cables every few years

Calibration And Maintenance

- Have a maintenance plan and a calibration schedule
 - Spare instruments reduce data gaps
 - Community pool for big items?
- Site visit every week, at least every month
- Site check list
 - Regular items e.g. raingauge, clean solar panels
- Site log book
 - Record everything (iPhone voice recording)

Communications

- Single best purchase to improve data quality and collection rate
- Maxon Modmax NextG modem \$450
 - Fast enough to get 10 Hz data
 - Used out to 45km with 15 db yagi
 - Not quite line of sight, some refraction at 850 MHz
- Iridium satellite modem \$2500
 - When site out of NextG coverage
 - 2400 baud, OK for 30 minute data

Power

- Solar panels
 - Install 5 times the load, 10 times in NT
 - Don't mount under radiation sensors
 - Mount above ground to keep cool
- Auxiliary generator
 - Noisy, costly, local source of CO₂
- 240 VAC Mains
 - If available but buy Green Power!!

Summary

- It's easier to collect good data from the start than to clean up messy data later
- Put time into thinking about what you're doing and why, be clear about what data you need
- Resist the temptation to expand your objectives at the expense of the gear
- Buy the best instruments you can afford and install redundant instruments
- Pay for near-real time communications with your site

"Don't do as I do, do as I say"