The development of a disjunct eddy accumulation system for the determination of ecosystem level fluxes of CO₂, CH₄ and N₂O

Christopher Caldow Bachelor of Science (Chemistry) Supervisor: David Griffith

Advance

Outline of Honours Project

Two Phases:

 Development of a Disjunct Eddy Accumulation (DEA) system for the measurement of greenhouse gas fluxes.

2. Deployment in the field for evaluation of:
The DEA system
Greenhouse gas fluxes

Outline of Presentation

1. Greenhouse Gas Fluxes

Note on the importance of CO_2 , $CH_4 \& N_2O$ fluxes.

2. Flux Measurement Techniques

Micrometeorological techniques, Disjunct Eddy Accumulation (DEA), development of DEA system, implementation of technique.

3. <u>Results</u>

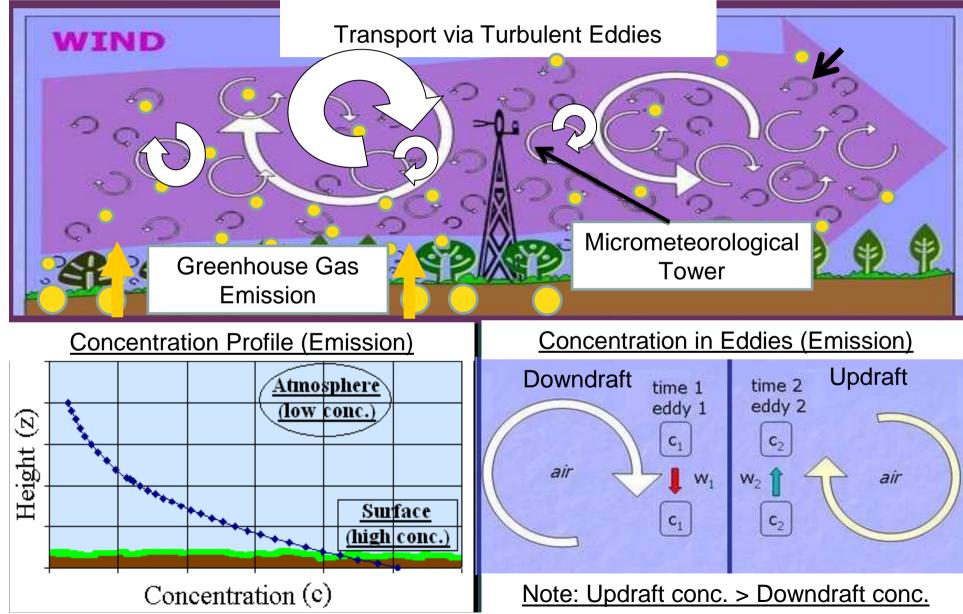
Measured fluxes, verification of the DEA technique

4. Conclusions and Future Directions

1. Greenhouse Gas Flux Estimation

• Currently there are large uncertainties in the source and sink estimates for greenhouse gases

Table: Sources, Sinks and Atmospheric Budgets of CH₄ (Tg(CH₄)yr⁻¹)


References	Wuebbles a	and	J. Wa	ang et al., 2004	4 Mikaloff Fletcher et
	Hayhoe, 20)02			al., 2004a
Natural Sources	145			200	260
Anthropogenic	358			307	350
Sources					
Total Sources	503			507	610
Total Sinks	515			492	577
Imbalance	(-12)		\rightarrow	(+15) ←	

- Compared to measured 0.6 Tg (CH₄) yr-1 average annual increase, 2000-2005 (IPCC, 2007).
 Desirable to obtain more accurate greenhouse gas flux estimates in order to:
 - provide better data for modelling
 - decrease the uncertainty in source sink estimates

IPCC, 20

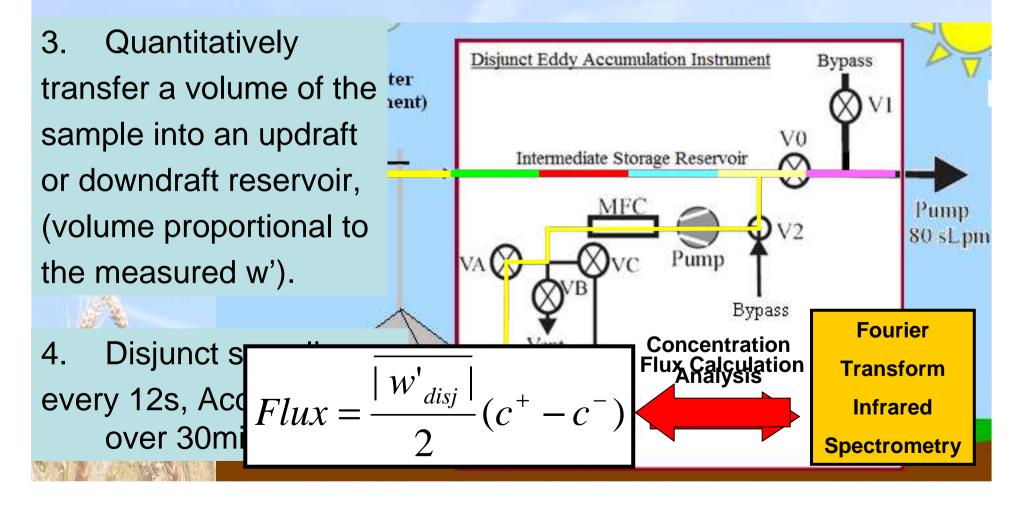
- allow for more effective mitigation strategies.

2. Principles of Micrometeorological Flux Measurement Techniques

2. Disjunct Eddy Accumulation (DEA)

- DEA innovative technique with potential to provide simultaneous measurement of CO₂, CH₄ and N₂O fluxes.
- 'Disjunct sampling' samples are taken periodically from a continuous data series; expect a similar result but larger statistical uncertainty.
- Further experimental verification of the technique is required (Turnipseed et al., 2009)

Benefits of Disjunct Eddy Accumulation


- Non-intrusive technique
- Slow response analytical sensor capability allows for analysis of CO₂, CH₄ & N₂O

• Long-term measurement capabilities e.g. full growing or seasonal cycle

• Large spatial resolution e.g. paddock/ecosystem scale

Principles of The DEA Technique

- 1. Measure the instantaneous vertical wind velocity (w') of air sample (~0.1s) to be captured.
- 2. Quickly capture the sample of air

Development of DEA system

- 1. DEA manifold
- Hardware: valves, flow meters, main line and sampling line, bypasses

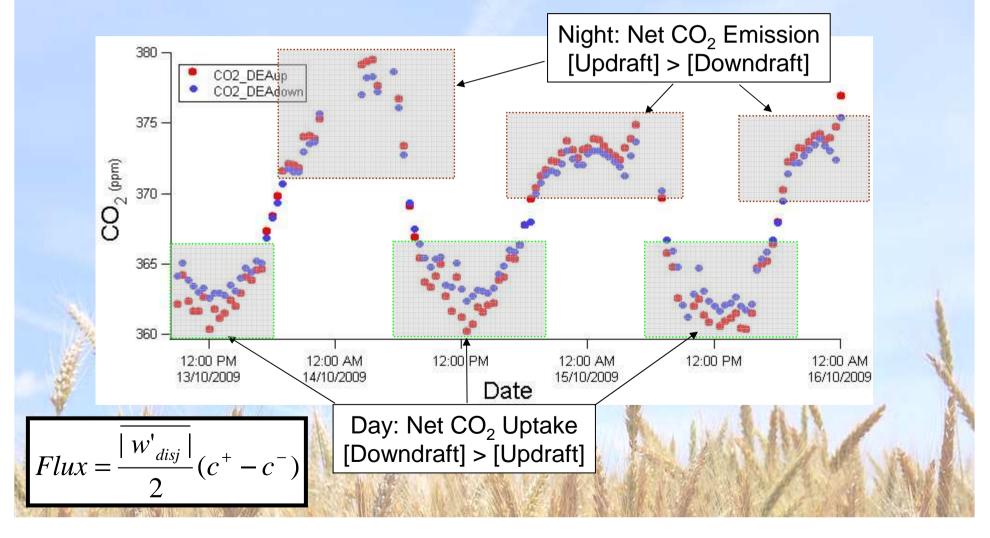
Development of DEA system

- 2. <u>DEA program</u>
- Controlled valve timing to carry out sampling based on the instantaneous vertical wind velocity (w')
- Retrieved w' measurements from sonic anemometer (20Hz)
- Logged data e.g. $|w_{disj}|$
- Technical assistance by Graham Kettlewel

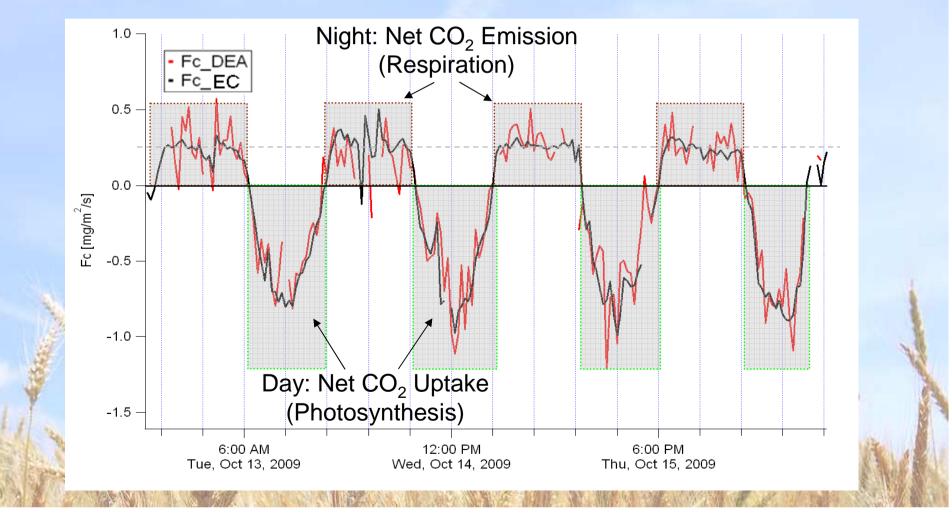
Disjunct Eddy Accumulation		Sonic Anemometer
Configure View Test Mode		Configure
Operation Parameters User Defined Averaging period 30 mins Total sampling period 12 secs Init wind speed mean 0.25 m/s	Pulse interval 5 ms Start Averaging period start time 14:30 Stop Wait for next interval 🗸	Single Statt Status 2c10D1134U Buffer count 0 No sync 0
Wind scaling factor 2,5 Min wind speed mean for max 0,1 Time resolution 0,15 Stop flow interval 500 Min wind speed mean for max 65 Stop flow interval 65 Stop flow interval 65 Stop flow rate 65 Sampling line flow rate 1.45 Wind speed mean 0.23 Measured 61.2 Sampling line flow rate 61.2 Sampling line flow rate 1.40	Current state Sample Duration 3666 ms # < Min 2 #> Max 4 Up 0.54 Cumulative Vol 2238 mL Down n/a Cumulative Vol 3635 mL Timing Feedback FillISR 53100.66 StopFlow 53101.13 FlushSamplingLine 53101.63 CollectSample 53103.83 WaitForNextCycle 53111.52 FlushISR 53112 FillISR 53112.66 StopFlow 53113.13 FlushSamplingLine 53112.66	Readings Range X -00.78275 m/s 0 Y 03.14775 m/s 0 Wind direction 271 Z 00.05025 m/s 0 Unid direction 271 Horozontal
Calculated	Sampling Information	University of Wollongong
Max wind speed 0.57 m/s Flush ISR 657 ms	02/11/09 14:45:00- Sample line: SampleUp 02/11/09 14:45:00- wl: 0.54m/s Time: 7695ms Vol: 179. 02/11/09 14:45:12- Sample line: SampleDown	
FillISR 457 ms	02/11/09 14:45:12· w/: -0.26m/s Time: 3666ms Vol: 85.5	Internet and Inter
Flush sampling line 2208 ms	Warnings 02/11/09 14:42:36- w/i-0.62> w/lmax0.5704375 02/11/09 14:43:12- w/i-0.70> w/lmax0.5704375	7.8
-	02/11/09 14:43:12- w]-0.70> w/max0.5704375 02/11/09 14:44:00- w/-0.62> w/max0.5704375	

Field Setup

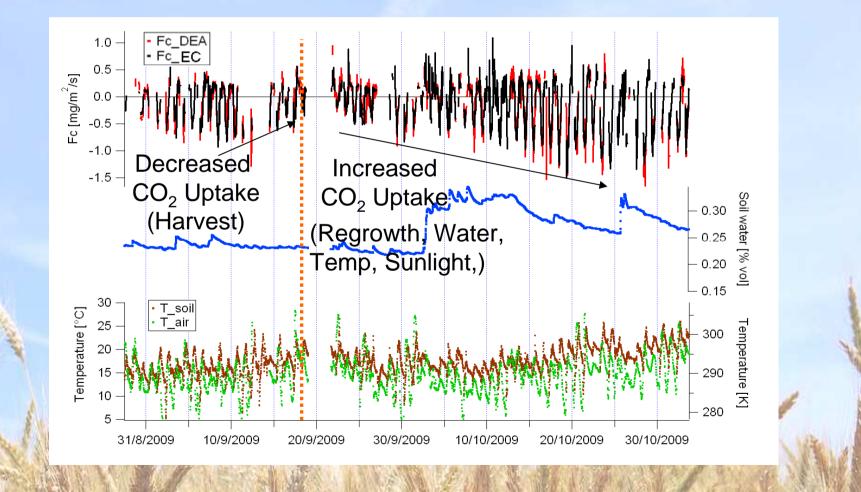
- Circular grass paddock 1km in diameter
- Location: Shoalhaven Starches Environmental Farm, near Nowra
- Measurement Period 28th August onwards


Two flux measurement techniques:

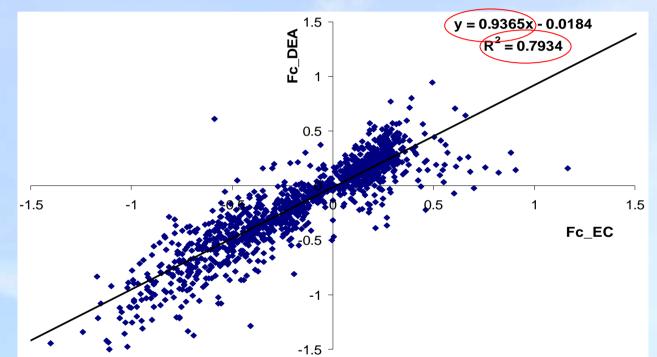
- 1. Eddy Covariance Used for experimental verification DEA
- 2. Disjunct Eddy Accumulation


3. Results – Raw CO₂ Data

 Reservoir CO₂ concentrations measured by the DEA technique (13th – 16th of October).

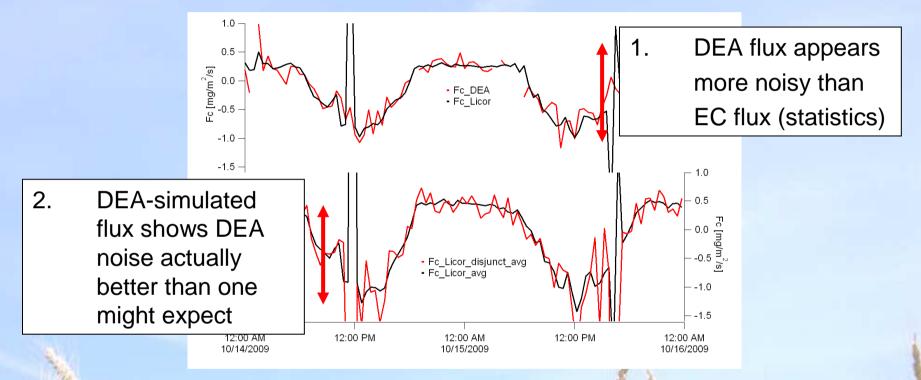

Results – CO₂ Flux

• CO₂ fluxes measured by the DEA and EC techniques (12th – 16th of October).


Results – CO₂ Flux

• CO₂ fluxes measured by the DEA and EC techniques over entire record (28/8 to 5/11)

<u>Results – CO₂ Flux (DEA vs EC)</u>


• Linear regression plot of DEA vs EC-measured CO₂ fluxes (28/8 to 5/11)

DEA generally underestimated EC flux by ~6% Better agreement than other literature results

Results – DEA Simulation

• <u>Top Graph</u>: CO_2 fluxes measured by the DEA and EC techniques (2 days).

Bottom Graph: DEA-simulated flux – provided by 'disjunct' sampling of10Hz EC flux measurements every 12s i.e. 1 in every 120 EC data points was sampled.

Simulation provided by Thorsten Warneke.

4. Conclusions

- Good agreement between DEA and EC measurement techniques; Slope=0.94, R²=0.79.
- Long term measurements provided insight regarding seasonal and climatic drivers of the flux (e.g. sunlight, temp.).
- DEA has the ability to provide reasonably accurate measurements of CO₂, CH₄ and N₂O fluxes over complete seasonal or growing cycles (months, years).

Future Directions

- Long-term deployment where detectable and significant fluxes of CO₂, CH₄ and N₂O occur e.g. Australian wheat belt and sugar cane growing regions (heavily fertilised), rice fields (high CH₄ emission)
- Develop greenhouse gas budget estimates for agricultural systems and ecosystems.
- Refine the DEA system and optimise its measurement capabilities
 - Determine the minimum detectable fluxes of CO_2 , CH_4 and N_2O using DEA.

Acknowledgements

- Centre for Atmospheric Chemistry (CAC), in particular: D. Griffith (supervisor), M. Riggenbach, G. Kettlewell and T. Warneke.
- Glenys Lugg and those working at the Manidra Group Shoalhaven Starches Environmental Farm
- Thankyou for listening.... are we wasting our time?

Farmers win in ETS backdown by Labor

STEPHANIE PEATLING POLITICAL CORRESPONDENT November 15, 2009 - 12:02AM

FARMERS would be exempt from the emissions trading scheme in the first concessions the Federal Government has made to the Opposition to gain its made to the Opposition to gain its SUPPOrt

Farmer ploughs ahead in leg:

inte

Coalition changes offer protection for big polluters

TOM ARUP ENVIRONMENT CORRESPONDENT

Government querie November 1, 2009 negotiations

C CARMEL EGAN

o the proposed emissions trading / polluting industry from the short-

who fight

A BATTLE is raging beneath the bobbing heads of lan Linklater's - scientists wheat crop in the red loamy soils of Gol Gol.

November 10, 2009

The Rudd Government has guestioned whether there is any point to negotiating on emissions trading when the Coalition remains unmoved on the science behind man-made global warming.

PAYING farmers and investors to preserve native forests, plant vast areas of trees, stop land clearing and improve soil could help Australia make big cuts to its greenhouse gas emissions and boost the chances of threatened native animals and plants. a group of leading Australian scientists argues.