Estimates of leaf area index using Hemispheric photos and MODIS

William Sea

CSIRO Marine and Atmospheric Research

Canberra, ACT

Ozflux Course, Creswick

5 February 2010

With additional contributions from

Philippe Choler, Richard Weinmann, Jason Beringer, Lindsay Hutley, Steve Zegelin, and Ray Leuning

Outline for talk

- Background
- Remarks on JB
- Field campaign
- Results
- MODIS disasters
- Summary

Background

•Leaf Area Index is the one-sided green leaf area per unit ground surface area in broadleaf canopies

- High quality LAI products are needed for water and carbon balance modeling at the regional to continental to global scales
- Validation of moderate scale remote sensing LAI products are seldom done using ground-based LAI measurements
- Assessment of MODIS Collection 5 LAI/fPAR products needed for savannas regions of Australia
- Such validation work presented us with numerous logistical obstacles but also opportunities for initial observations of the vegetation structure and composition

Moderate Resolution Imaging Spectroradiometer (MODIS)

Renewed interest in DHPs

- Inexpensive
- Easy to use (illumination conditions)
- No reference measurements needed
- Possible use over low vegetation canopies
- Direct evaluation of the quality of measurements (images)
- Possible distinction between green and non-green elements
- Possible to derive clumping information

Advantages of digital hemispheric photos

System	Illumination conditions	Spectral domain	Zenith angles	Azimuthal coverage	Gap size distribution	Post processing	Computer resources
DEMON	Direct	430 nm			No	No	Low
Sunfleck ceptometer	Direct, diffuse	PAR			Yes	Yes	Low
Accupar	Direct, diffuse	PAR			Yes	No	Low
LAI-2000	Diffuse	< 490 nm	5	range	No	No	Low
TRAC	Direct	PAR			Yes	No	Low
DHP	Direct, diffuse	Selectable	range	range	Yes	Yes	High
MVI	Diffuse	VIS, NIR	range	range	Yes	Yes	High
Ideal	Direct, diffuse	VIS, NIR	range	range	Yes	Yes	

Clumping of leaves: Unclumped vs. Clumped LAI

- *Effective* LAI assumes a Poisson spatial distribution of leaves in the canopy
- *True* LAI incorporates a clumping distribution of leaves
- With a "clumped" distribution of leaves in the canopy, the LAI is higher than the unclumped LAI, $LAI_{clumped} = \Omega * LAI_{unclumped}$
- But not all leaves are equal in the canopy!

Remarks on LAI

- Converting from PAI to LAI is not trivial.
- LAI (as sensed from above) generally has leaves covering stems and trunks in closed canopy forests.
- For savannas, it all depends on the tree architecture and cover.
- The clumping coefficient Ω is poorly measured and a large source error in LAI measurements (Weiss et al. 2004).
- The particular LAI used (in models) depends on the purpose.
- Represents a potential divide between the measurement community and the others.

Reference Maps (Morrisette et al. (2006)

- To assess the spatial variability of LAI, use data from a high resolution remotely sensed product, e.g. LANDSAT ETM (30 m)
- Develop relationship between NDVI and LAI
- Map LAI at 30 meters to compare with ground measurements

CAN-EYE 5.0 Software

🛃 CAN_EYE Parameterization 📃 🗖 🔀									
User Name :	GENERAL PARAMETERS								
CALIBRATION PARAMETERS									
Image Size: Lines	2000 Image Size: Rows	3008							
Optical Center: Line	1000 Optical Center: Row	1504							
Horizon (Pixel)	2000 Radius (°)	90							
Circle of Interest (°)	60 Sub Sample Factor	1 🗸							
ANGULAR RESOLUTION									
Zenith	2.5° 🗸 Azimuth	5° 🗸							
FCover Max Zenith Angle (°) 10° 🗸									
FAPAR									
Latitude of acquisition (Decimal Degree) -13.0									
	RESULTS Yes No.								
	Html Report								
Matlab Outputs									
	DK SAVE								

Perfect to not-so-perfect hemispheric photos

Typical Classification using CAN_EYE 5.0 software

Unclassified hemispheric photos

Two state classification by "filling in the sky"

Essential steps in the process

MODIS: from daily surface reflectances to 8-day LAI

Currently monthly MODIS LAI

Other remotely sensed LAI products

- CYCLOPS
- GLOBCARBON
- ECOCLIMAP
- AVHRR
- Several recent papers suggest better performance for CYCLOPS than MODIS (Baret et al. 2008, Garrigues et al. 2008).
- But, MODIS has a much more friendly user interface than the others.
- And, MODIS is processed up to date.

Savanna Field Campaign

- 1 September-18 September, 2008
- Darwin-Tennant Creek, NT (~900 km) along the Northern Tropical Terrestrial Transect
- Participants from CSIRO, Monash University, Charles Darwin University, Flinders University, RMIT, and various Europeans
- Field measurements coordinated with low level aircraft flights measuring CO₂ and H₂0 fluxes, LIDAR and hyperspectral sensors for vegetation structure, and PLMR for soil moisture (coordination meeting 15-16 April in Melbourne).
- We focused our efforts on comparing ground-based measurement of leaf area index with values derived from MODIS Collection 5 LAI/fPAR.
- This allowed us to actually visit the maximum number of landscapes in the Northern Territory during the campaign.

Principal Research Questions

- How much improved (if any) are LAI estimates using MODIS Collection 5 (MC5) compared with Collection 4 (MC4) in savanna regions of Australia?
- Is there an LAI offset different from zero at low LAI values?
- How well does MC5 LAI compare with ground-based estimates derived from hemispheric photos?
- Does clumping matter?
- What is the pattern of LAI along the NATT?

Field sites and rainfall gradient

MODIS pixels & sampling

Result 1: Comparison of MODIS Collection 4 and 5

Sea et al. (2009) Remote Sensing of Environment in revision

Result 2: Stem LAI ~ 20% of total LAI

Result 3: Comparison of MODIS to hemispheric photos

For clumped LAI, SMA regression, $r^2 = 0.89$, error dominated by unsystematic component

Sea et al. (2009) Remote Sensing of Environment in revision

Result 4: Leaf area index where there should be none!

Table 1. LAI offset sampling sites in the Northern Territory.

Site	Latitude	Longitude	Description	Ground LAI	MODIS LAI
1	-14.0103	131.3646	Bare	0.0	0.3
2	-14.0631	131.3167	Senescent	0.0	0.5
3	-17.1517	133.3485	Senescent	0.0	0.2
4	-17.8974	133.9301	Bare	0.0	0.2
5	-17.9918	134.0157	Senescent	0.0	0.2
				0.0	Mean = 0.28 Std = 0.13

Sea et al. (2009) Remote Sensing of Environment in revision

Result 5: LAI along the rainfall gradient

Potential Errors in MODIS LAI

- Errors in the radiances
- Incorrect biome classification
- Inherent problems of treating classes as homogeneous, e.g. deciduous African savannas & evergreen Australian savannas
- Structural problems in the model, e.g. reliance on backup model

MODIS disasters: Tumbarumba & Otway:

Land Cover

Evergreen Broadleaf Forest (green)

Summary

- The choice of equipment for LAI measurement depends on site and research requirements, and budget.
- Beware of the caveats, especially the difficulties in measuring clumping index.
- Our results show that MODIS Collection 5 does a reasonably good job at estimating LAI and compares well with DHPs
- Our results suggest that DHPs should incorporate clumping for comparison to MODIS LAI OR that MODIS is able to capture clumping of vegetation.
- Some disasters remain for MODIS LAI, with estimates not passing the Leuning Laugh Test (LLT).

