THE SURFACE WATER BALANCE OF THE WOMBAT STATE FOREST, VICTORIA: AN ESTIMATION USING EDDY COVARIANCE AND SAP FLOW TECHNIQUES

Caitlin Moore, Jason Beringer, Darren Hocking, Ian McHugh, Peter Isaac Stefan Ardnt, Nina Hinko-Najera, Benedikt Fest, Julio Najera

What's the purpose of this study?

The problem

- Global/regional climate change
- IPCC predictions for SE Australia (2007)
- Effects on water use/output from forest catchments

- Sap Flow
- Remote sensing
- Catchment water balance

Who cares

- Forest managers and planners
- Catchment management authorities
- Local residents/land managers

Wombat State Forest

- Near Daylesford, Central Victoria
- Covering 70,000 ha
- Temperate climate zone at an elevation of 713 m asl
- Long term average maximum daily temperature ~ 18 °C + range of 3-44 °C
- Declared a state forest in 1871
- Disturbances: Fire and harvesting

(www.nearmap.com)

(adapted from wombatwaterwatch.com.au)

The Trees of Wombat State Forest

(Brooker 2006)

- a) Eucalyptus obliqua (L'Herit) Messmate Stringybark
- b) Eucalyptus radiata (Sieber ex DC) Narrow-leafed Peppermint
- c) Eucalyptus rubida (Deane & Maiden) Candlebark

Methods

Flux Tower Instrumentation

E. radiata

5

E. obliqua

Eucalyptus obliqua

Eucalyptus radiata

Eucalyptus rubida

Wombat's Water Balance

- Total rainfall from August 2010 to August 2011 at Wombat was 1296 mm A wetter than average year (av. 844 mm)
- Total evapotranspiration (LE flux) was 648 mm ~ 50 % of total rainfall

Cumulative precipitation (P) and Evapotranspiration (ET) from Wombat State Forest

Wombat in the bigger picture

Annual precipitation vs. Evapotranspiration for forests globally

n=165 (modified from Baldocchi & Ryu 2010).

Daily water use values for different forest types

Forest Type	Climate	Water Use (mm day⁻¹)	Reference
Broadleaved Deciduous	Temperate	1.47-1.67	(Wilson and Baldocchi, 2000)
Broadleaved Evergreen	Temperate	2.49-4.03	(Leuning et al., 2005)
Broadleaved Evergreen	Tropical	3.0-3.75	(Fisher et al., 2009)
Savanna Woodland	Tropical	1.4	(Hutley et al., 2000)
Savanna Woodland	Semi-arid	1.04	(Baldocchi et al., 2004)
Coniferous Evergreen	Temperate	1.07-1.47	(Grunwald and Bernhofer, 2007)
Coniferous Evergreen	Boreal	0.1-3.5	(Arain et al., 2003)
Broadleaved Evergreen	Temperate	0.74-2.81	This study

Preistley-Taylor Coefficient

- Calculation of the Preistley-Taylor coefficient (α) provides a useful index for comparing the evaporative control of different forest types (Komatsu 2005).
- $\alpha = ETeq:ET$
- High leaf area, ample soil water supplies and a large photosynthetic capacity can increase this ratio (Baldocchi & Ryu 2010).

Forest Type	Mean	Standard Deviation
Boreal Broadleaved Deciduous	1.09	-
Temperate Broadleaved Deciduous	0.851	0.147
Tropical Broadleaved Evergreen	0.824	0.115
Temperate Broadleaved Evergreen	0.764	0.181
Temperate Coniferous	0.652	0.249
Boreal Coniferous Evergreen	0.550	0.102
Boreal Coniferous Deciduous	0.530	0.084
Wombat State Forest (this study)	0.990	-

Priestley-Taylor coefficients for forest types around the world

(Baldocchi & Ryu 2010).

Sap Flow

Average daily water use (L day⁻¹) was 19.7 and 13.8 for *E. obliqua* and *E. radiata*, respectively.

12

Mean (±SE) daily tree water use (L day⁻¹) at WSF for 23 days

Variables influencing sap flow

 Daily tree water use followed the trend in daily total precipitation, with a MLR revealing solar radiation, VPD, wind speed and air temperature each had a significant effect on tree water use.

Pareto chart of t-values for the meteorological variables affecting tree water use at WSF (30/07/11 - 21/08/11)

Outcomes

- In a climatically wet year, the Wombat State Forest output approximately half of the annual rainfall sum.
- Eddy covariance measurements conform with the expected range for temperate forests around the world.
- Sap flow measurements reveal the contribution of individual trees and species to the total water use of the forest
- The WSF was more likely to be energy limited, rather than water limited, during the period of measurement.

Future Directions

- Continue measurements in order to capture a wider range of climatic variability; i.e. wet, dry and average years.
- Findings can be used to provide a dry sclerophyll component to climate/vegetation models or validate remote sensing measurements.

Acknowledgements

- Project partners Monash University (Jason Beringer) and the University of Melbourne (Stefan Ardnt)
- ARC LIEF "MEGA Mobile Ecosystem Gas-exchange Analyser for Australian Landscapes (LE0882936)
- Jason Beringer Honours supervisor
- Nina Hinko-Najera (data QA/QC for Eddy covariance)
- Kara Rasmanis/Reza Amiri (figures)
- Everyone who helped with fieldwork!!

References

- ARAIN, M. A., BLACK, T. A., BARR, A. G., GRIFFIS, T. J., MORGENSTERN, K. & NESIC, Z. 2003. Year-round
 observations of the energy and water vapour fluxes above a boreal black spruce forest. *Hydrological Processes*,
 17, 3581-3600.
- BALDOCCHI, D. D. & RYU, Y. 2011. A Synthesis of Forest Evaporation Fluxes from Days to Years as Measured with Eddy Covariance. *In:* LEVIA, D. F., CARLYLE-MOSES, D. & TANAKA, T. (eds.) *Forest Hydrology and Biogeochemistry.* Springer Netherlands.
- BALDOCCHI, D. D., XU, L. & KIANG, N. 2004. How plant functional-type, weather, seasonal drought, and soil
 physical properties alter water and energy fluxes of an oak-grass savanna and an annual grassland. Agricultural
 and Forest Meteorology, 123, 13-39.
- BROOKER, I. 2006. EUCLID: Eucalypts of Australia. 3rd ed. Collingwood, Victoria: CSIRO Publishing.
- FISHER, J. B., MALHI, Y., BONAL, D., DA ROCHA, H. R., DE ARAÚJO, A. C., GAMO, M., GOULDEN, M. L., RANO, T. H., HUETE, A. R., KONDO, H., KUMAGAI, T., LOESCHER, H. W., MILLER, S., NOBRE, A. D., NOUVELLON, Y., OBERBAUER, S. F., PANUTHAI, S., ROUPSARD, O., SALESKA, S., TANAKA, K., TANAKA, N., TU, K. P. & VON RANDOW, C. 2009. The land-atmosphere water flux in the tropics. *Global Change Biology*, 15, 2694-2714.
- GRUNWALD, T. & BERNHOFER, C. 2007. A decade of carbon, water and energy flux measurements of an old spruce forest at the Anchor Station Tharandt. *Tellus B*, 59, 387-396.
- HUTLEY, L. B., O'GRADY, A. P. & EAMUS, D. 2000. Evapotranspiration from eucalypt open-forest savanna of northern Australia. *Functional Ecology*, 14, 183-194.
- KOMATSU, H. 2005. Forest categorization according to dry-canopy evaporation rates in the growing season: comparison of the Priestley–Taylor coefficient values from various observation sites. *Hydrological Processes*, 19, 3873-3896.
- LEUNING, R., CLEUGH, H. A., ZEGELIN, S. J. & HUGHES, D. 2005. Carbon and water fluxes over a temperate Eucalyptus forest and a tropical wet/dry savanna in Australia: Measurements and comparison with MODIS remote sensing estimates. Agricultural and Forest Meteorology, 129, 151-173.
- WILSON, K. & BALDOCCHI, D. 2000. Seasonal and interannual variability of energy fluxes over a broadleaved temperate deciduous forest in North America. *Agricultural and Forest Meteorology*, 100, 1-18.