

Australian Government

Geoscience Australia

Eddy Covariance at the Controlled CO₂ Release Facility, Ginninderra:

A tool for emission quantification?

Ivan Schroder

Acknowledgements

Co-researchers:

```
Tehani Kuske<sup>1,2</sup>, Andrew Feitz<sup>1,2</sup>, Ulrike Schacht<sup>2,3</sup>, Ryan Noble<sup>4</sup>,
Henry Berko<sup>1,2</sup>, Steve Zegelin<sup>5</sup>, and Charles Jenkins<sup>2,6</sup>
```

- ¹Geoscience Australia
- ²Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC)
- ³Australian School of Petroleum, University of Adelaide
- ⁴CSIRO Earth Science and Resource Engineering
- ⁵CSIRO Marine and Atmospheric Research
- ⁶CSIRO Energy Transformed Flagship

Australian Government

Geoscience Australia

Controlled Release Facility - Ginninderra

Designed to simulate subsurface CO_2 (and CH_4) leaks: from CCS, volcanic gases, CSG wells, natural CH_4 seeps

Goal to develop methodology for detecting and quantifying leaks

In collaboration with the CO2CRC

GEOSCIENCE AUSTRALIA

Commonwealth of Australia (Geoscience Australia) 2013

Horizontal well

125 mm ϕ HDPE pipe x 120 m long Slotted every 0.5 m over 100 m, installed 2 m deep

Six release chambers

GEOSCIENCE AUSTRALIA

Commonwealth of Australia (Geoscience Australia) 2013

Site location and conditions

Located in north Canberra

Hosted on the CSIRO Ginninderra Experiment Station

A 1 ha field within 800 ha of cropping/grazing land

Seasonal, dry temperate climate

Cold in winter!!

First experiment

CO₂ released from: 27 March - 28 May 2012

Release rate: 100 kg/day

Released evenly across all sections

A range of techniques were trialled concurrently:

- Eddy covariance
- Soil-flux surveys
- Soil-gas wells

GEOSCIENCE AUSTRALIA

- EM31 and GPR
- Atmospheric tomography
- Kr tracer and sampling
- Groundwater monitoring

Commonwealth of Australia (Geoscience Australia) 2013 Edc

Crop conditions

The experiment was conducted over a slashed millet crop

Crop sown late in the season - which meant crop had very little opportunity to grow

Crop height ranged 0.2 - 0.6 m

GEOSCIENCE AUSTRALIA

EC flux tower

EC tower recorded from: 27 March – 13 June 2012

Dominant wind from NW

Tower positioned 15 m south of east end of pipe

Height of 2.8 m

GEOSCIENCE AUSTRALIA

Commonwealth of Australia (Geoscience Australia) 2013

EC flux tower instruments

Fast Data – 10 Hz

Slow Data – 15 min

Equipment	Variables Measured	Height (m)
Vaisala HMP50 RH	Relative humidity (RH), Air temperature (Ta)	1.5
& temperature		
CSI CSAT3 sonic	Wind direction (Wd), 3D wind components (Ux,	2.8
anemometer	Uy, Uz), Wind speed (Ws), Virtual air	
	temperature (Tv)	
Li-Cor 7500 IRGA	Absolute humidity (Ah), CO ₂ concentration	2.8
	(Cc), Air pressure (ps)	
Kipp and Zonen	Upwelling- and downwelling-longwave radiation	2.7
CNR4 radiometer	(Flu and Fld), Upwelling- and downwelling-solar	
	radiation (Fsu and Fsd)	
Gill WindSonic 2D	Backup Wind direction and Wind speed	2.9
sonic anemometer		

Data Processing

Data was processed up to L3 using OzFlux v2.1

No direct QC checks on CO_2 conc., σ of CO_2 conc. and Fc

•This could remove anomalous high measurements associated with the leak

L3 data was filtered to exclude time periods with:

•Missing Fc values

•Less reliable measurements associated with night-time and low turbulent conditions:

- Fsd > 50 W/m²
- u* > 0.11 m/s

Resulting data was grouped by wind direction into 24 15° bins

Can the tower detect the direction of the leak?...Yes

Elevated Fc seen to NW

Drops back to baseline after release

Commonwealth of Australia (Geoscience Australia) 2013

A strong CO_2 leak signal was found within the NW quadrant between 285-315°

However, crop health/type is a confounding variable

- Out of season
- Poor growth & colour

Adjacent fields more photosynthetically active

• Greater F_c drawdown

GEOSCIENCE AUSTRALIA

Commonwealth of Australia (Geoscience Australia) 2013

When split into defined bins, the differences between the leak, the field site, and the surrounding fields become more apparent

GEOSCIENCE AUSTRALIA

Commonwealth of Australia (Geoscience Australia) 2013

Median Fc_{back} for the field site = 0.632 µmol/m²/s

Median Fc_{back} for surrounding fields = -3.356 μ mol/m²/s

GEOSCIENCE AUSTRALIA

Geoscience Australia) 2013

The goal is a stand-alone method that could reliably quantify emissions with only a rough idea of a leak's location, and is not too expensive for industry uptake

Very little research into using EC for leak quantification

• ZERT controlled release facility in Montana achieved 7% quantification of leak (Lewicki et al. 2009)

The problem of using EC in leak quantification is two-fold:

- To convert fluxes to a leakage rate, we need to constrain the flux signal to a given area
- We need to separate Fc_{leak} from Fc_{back}

Footprint contours

EC tower

GEOSCIENCE AUSTRALIA

Commonwealth of Australia (Geoscience Australia) 2013

The area contributing to Fc_{leak} was defined as the minimum distance which fully enclosed the leak, for directions with elevated Fc

- Unfortunately, this required a priori knowledge of the leak's distribution
- Determined by soil flux survey

The Fc_{leak} area was identified as:

- The 50% less the 1% footprint
 - From 255-345°

GEOSCIENCE AUSTRALIA

A new flux (Fc_{pert}), representative of only the leakage area for each bin (A_{bin}) was calculated: To be used for diagrammatical purposes ONLY. Image copyright Google. Soil flux survey (Log Fc) $Fc_{tot} = Fc_{pert} * 0.49$ 0 to 0.50 0.51 to 1.00 $+ Fc_{back} * 0.51$ 1.01 to 1.50 1.51 to 2.00 Fc_{tot} = median total CO₂ flux 2.01 to 2.25 2.26 to 2.50 Fc_{back} = median background CO₂ 2.51 to 2.75 flux from 240-255° & 345-15° 2.76 to 3.00 3.01 to 3.25 Assumptions: 3 26 to 3 50 3.51 to 3.75 Fcleak was sourced entirely from the area between the mean 50% 500 m approx & 1% footprint isopleths The dashed area had a background flux signal Leakage wind sector bin Inferred Fc_{back} Fcback EC tower (Fc_{back})

A leakage rate was then calculated: $CO_2 Leakage rate = \Sigma A_{bin} * (Fc_{pert} - Fc_{back})$ Assumption:

• Each m² contributes equally to measured flux signal

Using this method, calculated the leakage rate as 79 kg/day

However, this rate is strongly dependent on the assumptions and decisions made:

		Median Fc _{back} used in calculations				
		240-255° & 345-15° (0.632 µmol/m²/s)	345-255° (-2.702 μmol/m²/s)			
%NN isopleth used	50%	79 kg/day	127 kg/day			
	70%	190 kg/day	307 kg/day			

Summary

- Novel methodology for EC quantification is in development
- Significant improvement seen in leak quantification (79%) against a known CO₂ release
- Present limitations:
 - Requires leak distribution to be known
 - Doesn't account for non-linear source contributions to flux with distance
 - Fc_{back} is critical variable, yet is based on much less data because of infrequent NE-SW winds
 - Technique reliant on good footprint model.
- Further work is underway to refine the method, test its assumptions and validate against other methods for quantifying CO₂ leaks

Summary

- Another release will be running in August 2013.
 - The field will be split N-S between wheat (E) and snow peas (W)
 - We have access to two flux towers
 - Suggestions for optimal tower placement, instrument height, supporting variables etc. are welcome

Australian Government

Geoscience Australia

Questions and Discussion

Ivan Schroder

Phone: +61 2 6249 9741

Web: www.ga.gov.au

Email: ivan.schroder@ga.gov.au

Address: Cnr Jerrabomberra Avenue and Hindmarsh Drive, Symonston ACT 2609 Postal Address: GPO Box 378, Canberra ACT 2601

Australian Government

Geoscience Australia

Soil properties

30cm deep topsoil layer (sandy loam)

Sandy loams and clays with occasional coarse gravel

The carbonate content

< 0.3%

predominantly quartz with K and Na feldspars, illite/muscovite, clays and trace amounts of ankerite

Sample Depth (cm)	Soil description	<63µm clay/silt %	63- 125μm very fine sand %	125- 250μm fine sand %	250- 500μm medium sand %	500- 1000µm coarse sand %	1000- 2000μm very coarse sand %	>2000µm gravel %	CaCO3 %	Total Moisture %	Surface area (m²/g)	Laser particle size d(0.5) µm
0 - 30	Fine brown sandy loam	64	6	7	9	7	4	3	0.0	7.8%	12.1	22.4
30 - 50	Light brown fine sandy loam with occasional coarse sand	49	6	6	9	11	7	12	0.1	8.6%	12.1	21.7
50-70	Light brown fine sandy loam with occasional coarse sand/gravel	35	4	4	5	11	15	26	0.2	7.5%	14.2	44.5
70-85	Mottled orange brown/light brown fine sandy clay	61	7	5	5	6	7	8	0.3	14.1%	22.0	23.3
100- 120	Mottled orangey brown fine sandy clay	49	8	11	12	11	7	2	0.3	14.5%	27.4	25.6
150 - 160	Mottled orange- brown, loamy clay	44	7	7	11	14	11	6	0.3	13.3%	35.3	27.5
190- 200	Mottled orange- brown, clay fine sand minor coarse sand/gravel	32	6	9	14	17	14	9	0.3	10.8%	8.9	135.4