CO₂ fluxes following cultivation and pasture renewal

- toward increasing carbon storage in pastoral soils -

Susanna Rutledge Paul Mudge Aaron Wall Dave Campbell Louis Schipper

NEW ZEALAND AGRICULTURAL GREENHOUSE GAS Research Centre

University

Goal

To determine the effect of climate variability and management practices on CO₂ and C balance of dairy pastures with the <u>aim</u> to increase soil C gains or decrease losses

HOUSE GAS

Leading Partners in Sc

Copyright © 2010 New Zealand Agricultural Greenhouse Gas Research Centre

7 AUGUST 2013 | 2

Scope of presentation

- CO₂ balance following cultivation of permanent pasture
- 4-year carbon balance Scott Farm (including cultivation)
- Update ongoing experiment: CO₂ fluxes before and after regrassing to a mixed sward
- Calculating NECB for a farm: use of footprint information

IEW ZEALAND GRICULTURAL GREENHOUSE GAS research Centre _eading Partners in Scienc

Copyright © 2010 New Zealand Agricultural Greenhouse Gas Research Centre

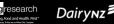
7 AUGUST 2013 | 3

Field site Scott Farm (cultivation and 4 yr NECB)

- DairyNZ[≥] research farm
- Intensively managed:
 - Year-round rotational grazing
 - Supplementary feed
- EC measurements from
 Dec 2007
 – Feb 2012

Leading Partners in Science

Copyright © 2010 New Zealand Agricultural Greenhouse Gas Research Centre


Why C losses following cultivation of permanent pasture ?

- Occasional cultivation of permanent pasture is fairly common (part of regrassing or when sowing crops)
- Little research done on effect on SOC storage
- Pastoral soils are generally high in soil C – so could potentially lose much C

Leading Partners in Science

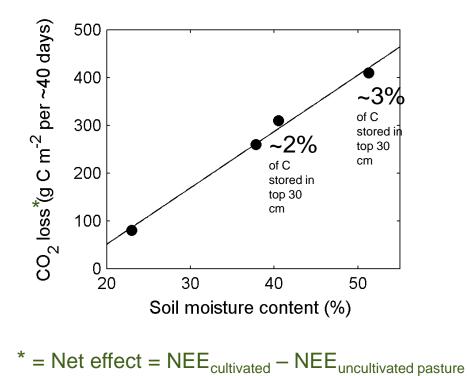
C losses (as CO₂) following cultivation

Experiment	Season	# soils	Soil condition	Method
1	Late summer/ Autumn 2008	1	drought	chamber
2	Spring 2008	2	normal moisture	chamber
3	Late summer/ Autumn 2010	1	dry	EC

 Losses measured over ~40 days and compared to uncultivated control.

Net effect = NEE_{cultivated} – NEE_{uncultivated pasture}

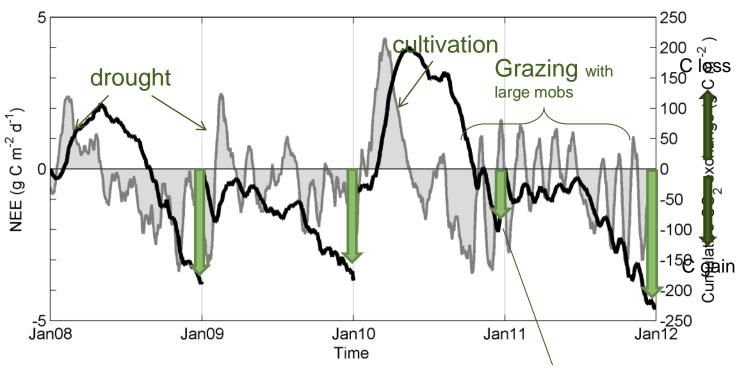
Chamber measurements made by then-MSc students Paul Mudge (Exp 1) and Dirk Wallace (Exp 2).

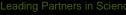


C losses (as CO₂) following cultivation controlled by soil moisture

 Cultivation under moist conditions led to larger losses

Rutledge, S et al. CO₂ emissions following cultivation of a temperate permanent pasture, in prep for submission to AEE

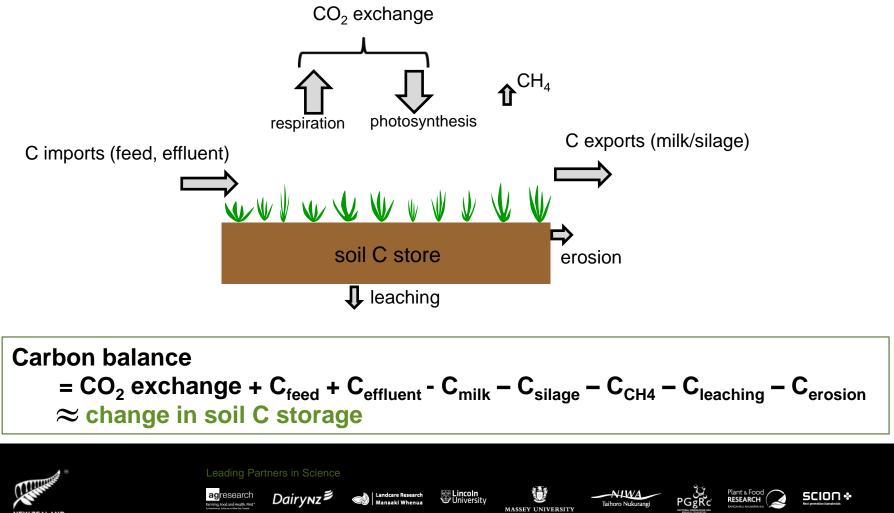


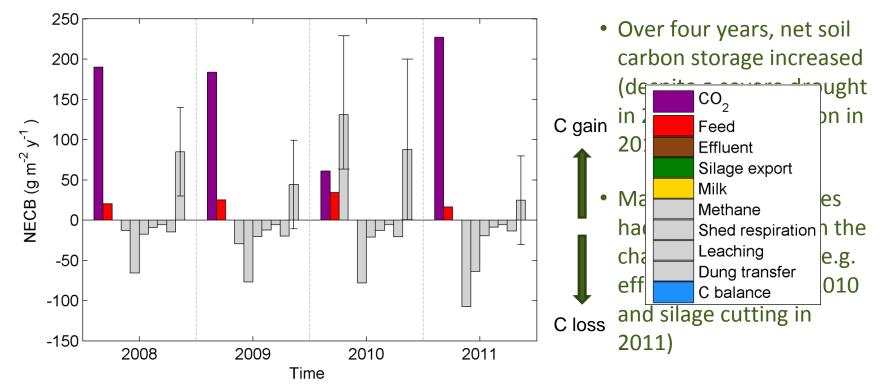

Recovery after cultivation – CO₂ flux

Site still a sink for CO₂ on the annual timescale despite cultivation

Rutledge, S et al. CO₂ and carbon balance of an intensively grazed temperate dairy pasture over four years: responses to weather variations and management practices, in prep

agresearch





C budget – Net Ecosystem Carbon Balance

Recovery after cultivation – C balance

Rutledge, S et al. CO₂ and carbon balance of an intensively grazed temperate dairy pasture over four years: responses to weather variations and management practices, in prep

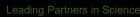
_eading Partners in Science

agresearch

Can a high diversity sward increase soil C?

- triple site comparison Troughton Farm -

Hypothesis:


High diversity sward has more and deeper roots

 \rightarrow more C input

 \rightarrow more C storage?

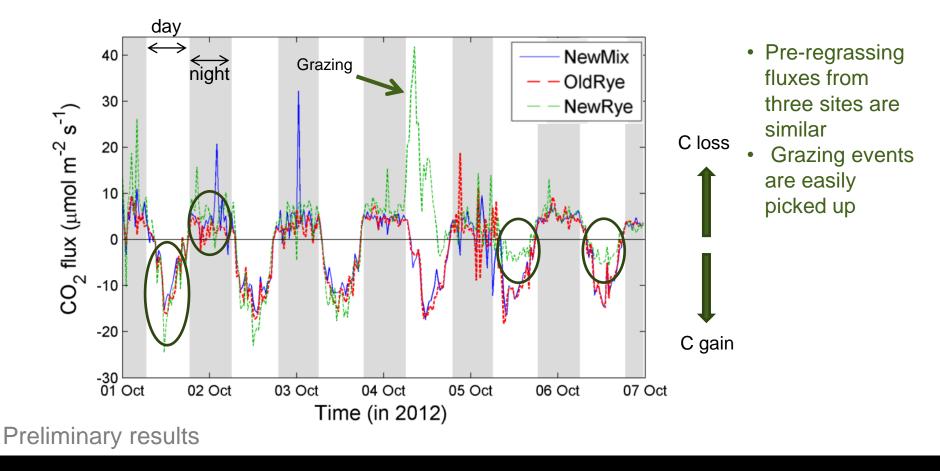
NEW ZEALAND AGRICULTURAL GREENHOUSE GA Research Centre

_eading Partners in Science

agresearch

Manaaki Whenua

University

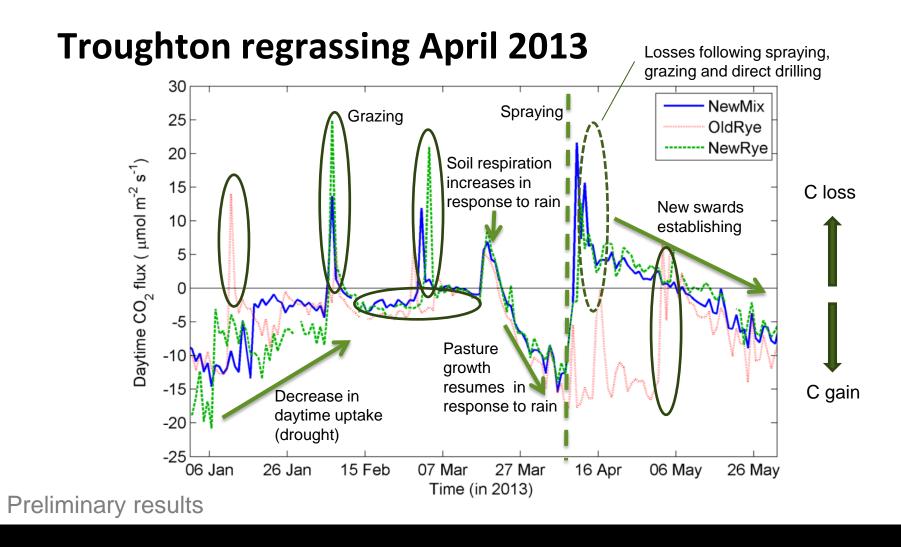


NEW ZEALAND AGRICULTURAL GREENHOUSE GAS Research Centre

13

Troughton before regrassing

agresearch


University MASS

Lincoln University

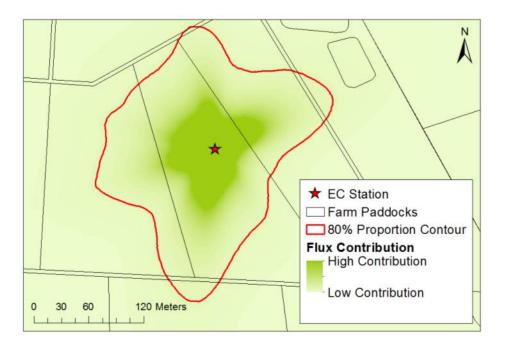
MASSEY UNIVERSITY

Landcare Research

Manaaki Whenua

ag research

Dairynz₿


SCION *

Plant & Food

RESEARCH

NECB on the farm: Use of footprint model

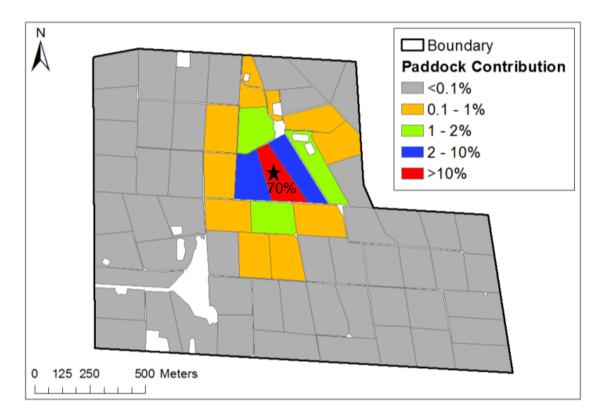
Firstly, to check the extent of the CO₂ flux footprint – are we measuring from the intended area?

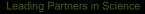
Kormann, R., Meixner, F.X., 2001. An analytical footprint model for nonneutral stratification. BLM 99, 207-224

Leading Partners in Science

agresearch

Lincoln University MASSEY



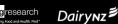

NECB on the farm: Use of footprint model (con'd)

 Paddocks in the footprint don't contribute evenly to the measured CO₂ fluxes

IEW ZEALAND GRICULTURAL GREENHOUSE GAS Research Centre

agresearch

Lincoln University


NECB on the farm: Use of footprint model (con'd)

 Management of individual paddocks in the footprint can differ (a bit)

→ inputs/outputs (kg C/ha) differ between paddocks

NECB on the farm: Use of footprint model (con'd)

To just take a straight average of the non-CO₂ C fluxes (feed, manure and silage) wouldn't be right.

Need to match footprints between CO₂ and non-CO₂ C fluxes

 \rightarrow weight the non-CO₂ C fluxes from the paddocks in the footprint by the contribution of that paddock to the CO₂ flux

NECB = CO_2 exchange + C_{feed} + C_{manure} - C_{milk} - C_{silage} - C_{CH4} - $C_{leaching}$

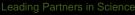
NEW ZEALAND AGRICULTURAL GREENHOUSE GAS Research Centre

Conclusions

- Over 4 years soil carbon storage at the Scott Farm site increased, despite large disturbances of drought and cultivation
- Management decisions can have a large effect on the carbon balance
- Cultivation
 - ~ 80 400 g C/m⁻² loss
 - moist conditions led to larger losses
 - Site recovered no SOC lost (annual timescale)
- Modelling required to get the full picture
- High diversity sward work off to good start

Acknowledgements

- Dairy NZ staff
- Dirk Wallace
- Miko Kirschbaum
- David Whitehead
- Ben Troughton



Funding

- New Zealand Agricultural Greenhouse Gas Research Centre
- University of Waikato
- Dairy NZ

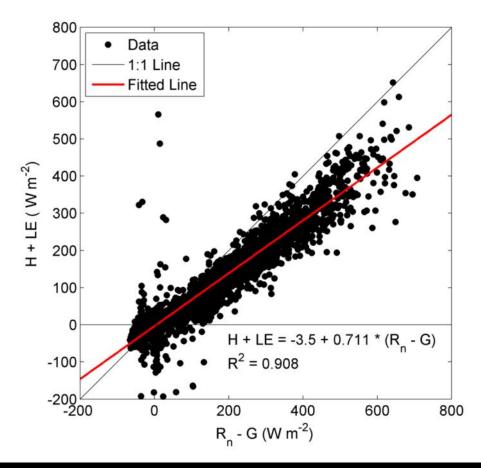
IEW ZEALAND IGRICULTURAL GREENHOUSE GAS Research Centre

h **Cincoln** a University

Spare slides

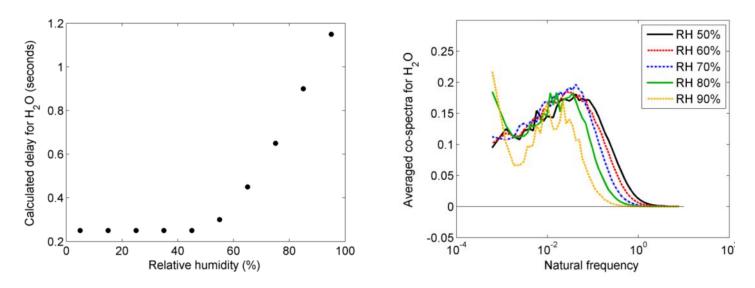
NEW ZEALAND AGRICULTURAL GREENHOUSE GAS Research Centre

agresearch



Challenges: lack of energy balance closure

agresearch Dairynz[#]



SCIO∩ ∻

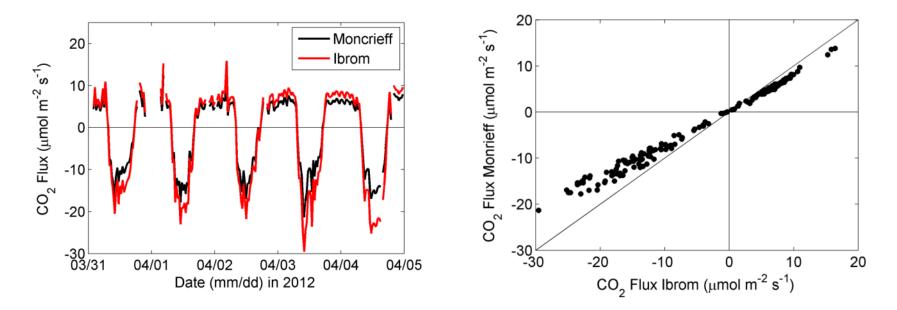
Challenges: underestimation of evaporation?

Research Centre

Leading Partners in Science

agresearch

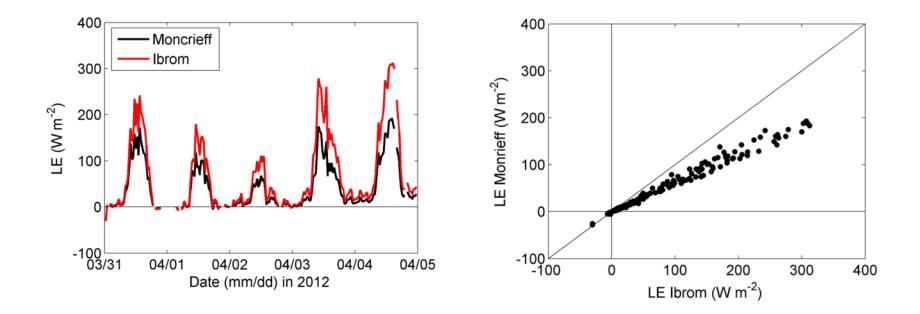
ading Farmers in Ociento



© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO

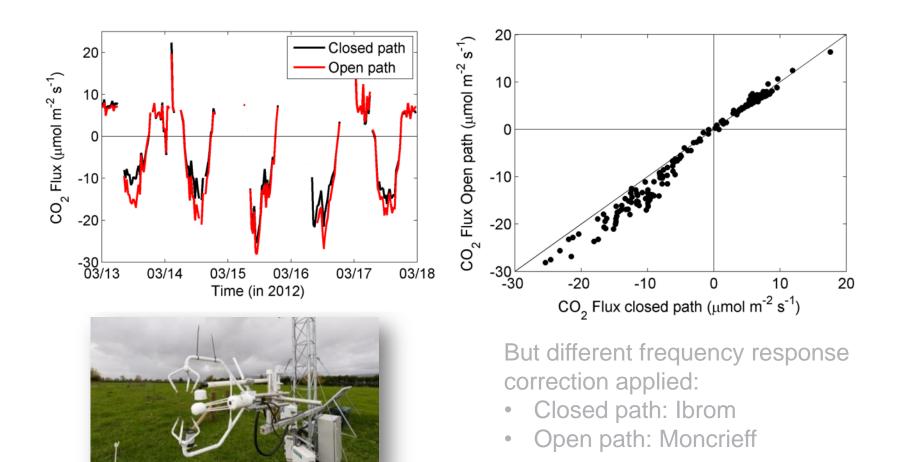
7 AUGUST 2013

Challenges: frequency response correction – CO₂ flux



Moncrieff, J. B., et al. 1997. A system to measure surface fluxes of momentum, sensible heat, water vapor and carbon dioxide, Journal of Hydrology, 188-189: 589-611.

Ibrom, A., et al. 2007. Strong low-pass filtering effects on water vapor flux measurements with closed-path eddy correlation systems, Agricultural and Forest Meteorology, 147:140-156.



Challenges: frequency response correction – LE

Closed path vs. Open path - CO₂ flux

earch Centre

RAL GREENHOUSE GAS

Leading Partners in Science

agresearch Dairynz

University Massey University

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO

Closed path vs. Open path - LE

But different frequency response correction applied:

- **Closed path: Ibrom**
- Open path: Moncrieff

esearch Centre

TURAL GREENHOUSE GAS

Lincoln University MASSEY UNIVERSITY

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO

7 AUGUST 2013

C losses (as CO₂) following cultivation

Experiment	Season	# soils	Soil condition	Net effect* over ~ 40 days (g/m ²)
1	Late summer/ Autumn 2008	1	drought	80
2	Spring 2008	2	normal moisture	310 - 410
3	Late summer/ Autumn 2010	1	dry	260
*Net effect =	~2 - 3% of stored in to 30 cm			

Rutledge, S et al. CO₂ emissions following cultivation of a temperate permanent pasture, in prep for submission to Agriculture, Ecosystems & Environment.

Leading Partners in Scien

agresearch

EC on the farm: fluxes during grazing

NEW ZEALAND AGRICULTURAL GREENHOUSE GAS Research Centre

agresearch

and Health First

30