A stand-alone tree demography and landscape structure module for Earth system models

Vanessa Haverd¹, Benjamin Smith², Garry Cook³, <u>Lars Nieradzik¹</u>, Peter Briggs¹, Stephen Roxburgh⁴, Adam Liedloff³, Mick Meyer⁵, Josep Canadell¹

¹ CSIRO – Marine & Atmospheric Research, Canberra
² University of Lund, Sweden
³ CSIRO – Ecosystem Sciences, Darwin
⁴ CSIRO – Ecosystem Sciences, Canberra
⁵ CSIRO – Marine & Atmospheric Research, Aspendale, Melbourne

MOTIVATION

2 | Tree demography and landscape structure module | Lars Nieradzik

Motivation

- Changes in biomass storage of forest and savanna ecosystems are a major explanation for the global terrestrial C sink which offsets ~25% anthropogenic C emissions.
- ESMs show divergent responses of biomass turnover to changing climate, translating to divergence in simulated climate
 - Lack of representation of forest dynamics one of the greatest uncertainties in future climate prediction?
- DVMs in ESMs have no explicit treatment of demographic processes (recruitment, mortality, competition for resources)

Neglect information which informs stand-scale individual-based forest dynamics models

- The Impact of fire on the global Carbon budget
- Readily usable with other DVMs and/or ESMs

4 | Tree demography and landscape structure module | Lars Nieradzik

POP

Key features - demographics

•Forcing by whole-ecosystem stem biomass increment from CABLE

•Simulate recruitment, allometric growth and mortality of age-size cohorts of trees in stands

•Partition total stem biomass increment among stands and cohorts as a proportion of current size

•Stress mortality influenced by declining growth efficiency under crowding and with increased size

•Upscaling to landscape by interpolation among stands of different age-since-disturbance

Key features - disturbances

•Account for age-size-density development of stands after (fire) disturbance

•Account for size-dependent mortality during (fire) disturbance

•Account for distribution of stand ages (after last disturbance) across landscape

•Allow for standard and catastrophic disturbances

Key features – technical aspects

•Minimise increase in CPU and memory use

•Stand alone model that can be coupled to not integrated within CABLE or the terrestrial ecosystem component of any ESM

CSIRC

POP outline

1 pixel ≈ 24 patches (patch representing a stand)

 \rightarrow 1 patch = up to 20 kohorts

Each patch:

•Attempt of recruiting for 1 new cohort/year (if sufficient GPP)

•Cohorts with low growth efficiency die

•Has own disturbance history and frequency

•Disturbance Frequencies are randomly generated with an exponential distribution $E(^{\delta}) = f_{dist}$

Fire – Disturbance

-Compute Fuel Load from overall biomass

- -Determine Fire Power
- -Compute P_{survival}
- -Remove biomass
- -Reset history

FIRST RESULTS

11 | Tree demography and landscape structure module | Lars Nieradzik

Study Site: Northern Australian Tropical Transect

12 | Tree demography and landscape structure module | Lars Nieradzik

Photos by Adam Liedloff

Sampling the NATT

8 NATT stations

1000 randomly generated pixels for CABLE

NATT Transect: gradients in rainfall, vegetation cover, fire.

Fire Data: Mick Meyer, pers. comm.

CABLE-POP vegetation function and structure predictions

Obs-based estimates

Kanniah, K.D., Beringer, J. and Hutley, L.B., 2011. Environmental controls on the spatial variability of savanna productivity in the Northern Territory, Australia. Agricultural and Forest Meteorology, 151(11): 1429-1439.

Williams, R.J., Duff, G.A., Bowman, D. and Cook, G.D., 1996. Variation in the composition and structure of tropical savannas as a function of rainfall and soil texture along a large-scale climatic gradient in the Northern Territory, Australia. Journal of Biogeography, 23(6): 747-756.

CABLE-POP tree population dynamics at low and high rainfall extremes

disturbance

CSIRC

SUMMARY & OUTLOOK

18 | Tree demography and landscape structure module | Lars Nieradzik

- POP has passed the (NATT-)test
- Most probably improves Carbon budget calculations
- Is sufficiently fast to be applied in large scale studies.

Future Directions using POP coupled to CABLE

- Testing against global forest allometry
- Australian continental applications
 - E.g. estimates of C-sequestration following tree-plantings on cleared land.
- Prognostic fire modelling

Thank you

CMAR/ALOA Lars Nieradzik

t +61 2 6246 5557 e lars.nieradzik@csiro.au

CSIRO - MARINE AND ATMOSPHERIC RESEARCH www.csiro.au

CABLE-POPOP: consistent vegetation structure and function

Motivation 2: Impact of Fire on Terrestrial Carbon Balance

CSIRC