Crown diebacks: complex syndromes that are challenging to diagnose. Can EC help?

Tim Wardlaw Research & Development Branch Forestry Tasmania tim.wardlaw@forestrytas.com.au

Characteristics of complex dieback syndromes

- Predisposing factors
- Inciting (trigger) factors
- Contributing factors

Regrowth dieback

- Affects *E. obliqua*, *E. regnans* & *E. delegatensis* tall forests <u>OLDER than 40 years</u>
- Rainforest / wet sclerophyll understorey
 <u>UNAFFECTED</u>
- Intensity of dieback INSENSITIVE to stand density
- Dying dominants first noticed in mid-1960's
- Symptoms rapidly intensified in 1970's then abated through the 1980's
- Several 100,000s ha affected in Southern Forests, NW, NE and Tasman Peninsula

Timing of dieback events

West, P.W. (1979) Ann.App.Biol., 93: 337-350

Wardlaw (1989) N.Z.J.For.Sci., 19(2/3): 265-276

Characteristics of complex dieback syndromes

- Predisposing factors
- Inciting (trigger) factors
- Contributing factors

Dieback events coincide with severe summer drought and high temperatures

What triggers dieback episodes?

- drought
- high temperatures
- both?

The evidence from dendrometry

Palzer and Wardlaw unpublished data:

Increment in tree circumference of 15 dominant / codominant, 70-years-old *E. obliqua* at Hastings measured with band dendrometers between July 1980 – May 1985

Weak relationships of tree growth with rainfall and soil dryness

Decline in growth at high mean temperatures

Fitted model: Inc^{-1/2} = $0.0581(T-2.363)(1-e^{(T-18.3311)})$

Opportunistic water physiology campaigns

Palzer and Wardlaw unpublished data:

Afternoon and dawn measurements on detached leaves from the crowns of healthy and dieback-affected trees in a stand of 70 y.o. *E. obliqua*

- Stomatal conductance
- Leaf water potential
- Leaf turgor

The effect of exposure to high temperatures

Palzer and Wardlaw unpublished data:

Heat treatment (dry) of attached branches of *E. obliqua* saplings: 30 minute exposure; symptom assessment at 2, 4 and 6 weeks port-treatment.

Rapid death Early senescence Healthy A plausible hypothesis for the cause of regrowth dieback

Lethal heat damage to bud system during periods of stomatal closure on very hot days

Oecologia (2013) 172:317–326 DOI 10.1007/s00442-012-2494-6

PHYSIOLOGICAL ECOLOGY - ORIGINAL RESEARCH

Water flux of *Eucalyptus regnans*: defying summer drought and a record heatwave in 2009

Sebastian Pfautsch · Mark A. Adams

Regrowth dieback

- Affects *E. obliqua, E. regnans* & *E. delegatensis* tall forests <u>OLDER than 40 years</u>
- Rainforest / wet sclerophyll understorey
 <u>UNAFFECTED</u>
- Intensity of dieback INSENSITIVE to stand density
- Dying dominants first noticed in mid-1960's
- Symptoms rapidly intensified in 1970's then abated through the 1980's
- Several 100,000s ha affected in Southern Forests, NW, NE and Tasman Peninsula

Characteristics of complex dieback syndromes

- Predisposing factors
- Inciting (trigger) factors
- Contributing factors

Why are trees older than 40 years predisposed to dieback?

40 y.o.

6 y.o.

6 y.o. – spiral, interlocked pathway: each root supplies many branches

40 y.o. – vertical, sectoral: each root supplies few branches

Spiral, interlocked pathway an adaptation to maintain water to crown during drought

Legge, N.J. (1985) Aust.J.Bot., 33:287-298

Challenges in getting proof of causality?

- Forest age is a predisposing factor:
 - Need to make observations and measurements on large trees
- Responses of tall trees to inciting events are difficult to capture in *ad hoc* measurement campaigns

So how can EC help diagnose complex diebacks?

- 1. Can potentially detect stomatal closure in near real time. Hypothesise we would observe:
 - Sharp increase in Fc
 - Sharp decrease in Fl
 - Sharp increase in Fs

So how can EC help diagnose complex diebacks?: Complimentary measures

- 1. IR thermometers to measure leaf temperatures
- Event-triggered field campaigns to measure physiological and pathological responses during / soon after the event
- Tower-mounted camera (particularly controlled pan/zoom) would allow tracking of symptom development following events

We can circumscribe the weather events that trigger dieback episodes This then allows:

- Event-triggered flags from routine weather data collected by BOM
- Better understand vulnerabilities by evaluating return intervals for events of equal or greater magnitude

Time for a beer

What are the dieback symptoms?

1. Position of the most dieback-affected branch

Top of the crown in the quadrant exposed to afternoon sun

Palzer, C. (1983) Pacific Science, 37(4): 465-470

Shoot-leaf symptoms

Trait	Healthy	Dieback
Leaf area (cm ²)	20.5 _a	7.2 _b
LAI (m²/m²)	1.98 _a	0.3 _b
Dead growing tips (% of shoots)	0-8	40-60
Live accessory buds (% leaf axils)	>85	21
Leaf chlorosis / reddening	Rare	Frequent
Marginal leaf scorch	Rare	Rare

Palzer, C. (1983) Pacific Science, 37(4): 465-470