

Soil based greenhouse gas fluxes at Wallaby Creek – magnitude, spatial and temporal variability

Benedikt Fest Steve Livesley Jason Beringer Musa Kilinc Matthias Droesler Stefan Arndt

	Pre-ind.	Current	Growth	GWP
	280	375	1.5 ppm/yr	1
CH ₄	0.80	1.78	7.0 ppb/yr	25
N ₂ O	0.28	0.31	0.8 ppb/yr	320

- **Global warming potential** (**GWP**) relates all GHG's to the radiative forcing of CO₂, based on absorption of radiation and persistence in atmosphere
- Carbon dioxide equivalents (CO₂-e), normalise all gases to that of CO₂ using their GWP

Nitrous oxide (N₂O) can be produced in soils through two biological pathways: nitrification and denitrification

• Nitrification:

Aerobic, ammonia oxidizing bacteria produce NH_2OH and nitrate (NO_3) from ammonium (NH_4) , producing some nitrous oxide (N_2O) as <u>by-product</u> (nitrifier-denitrification). Common in well drained, aerated soils

• Regulating Factors:

 NH_4^+ and NO_2^- supply, soil water content, soil aeration, soil pH, temperature

• Denitrification:

Anaerobic bacteria reduce nitrate (NO_3) to gaseous nitrogen (N_2) . Nitrous oxide (N_2O) is an **integral step** in this process. Common in wet or compacted soils.

• Regulating factors:

Supply of NO₃- soil pH, temperature, soil water content, soil aeration

Net soil-atmosphere methane (CH_4) exchange is the balance of co-occurring CH_4 production and CH_4 oxidation processes

- Methane is produced by anaerobic methanogenic bacteria, during soil organic matter decomposition and mineralisation
- Methanogenic bacteria require:
 - anoxic conditions
 - C substrates
- Methane emissions increase with:
 - greater temperature
 - increasing soil water status
- However methane production is generally negligible in well drained upland soil systems

- Methane is consumed in soils by methanotrophic bacteria
- Soils represents 6-8 % of global CH₄ sink
- Soil methanotrophic bacteria require:
 - aerobic (O_2) conditions
 - CH₄ as substrate
- Methanotrophic bacteria:
 - MMO-enzyme
 - can use CH₄ as sole source of energy
- Diffusion limits oxidation:
 - soil water content
 - soil texture
 - soil bulk density (compaction)

Smith et al. (2003)

• Soil N status limits oxidation $- NH_4 + (thought to inhibit MMO)$

Wallaby Creek, King Lake NP

Comparison of two *Eucalyptus regnans* regrowth stands (30 and 80 years old) with a long term unburnt stand (project started in 2006 and seasonal measurements were taken in 2008)

120

20

Sainfall (mm)

Dec Vov

Over mature

80 years old

30 years old

Jul Aug Sep

n

Soil GHG fluxes were measured with two different measuring systems:

- Manual chamber incubations; to investigate spatial variation of soil GHG fluxes within and between different aged forest stands
- Automated chamber measuring system; to investigate temporal variation of soil GHG fluxes next to the CO₂ eddy covariance tower (2 week period in 2006)

Established methods were used to determine:

- soil bulk density
- soil gravimetric, volumetric water content
- soil temperature
- soil pH and EC
- particle size analyses
- soil inorganic N status
- soil total N, C, litter quantity
- litter quality (N, C)

Results

Temporal variability of soil GHG fluxes (O)

Spatial variability of soil GHG fluxes (O)

Seasonal variability of soil GHG fluxes in different age classes

Differences between age classes

C:N ratio might determine nitrification and mineralisation processes

- Soil C:N ratio determines the rate of nitrification and mineralisation in eucalypt forest soils
- This may indirectly determine N₂O production
- Soil C:N > 20 leads to minimal nitrification, and minimal N₂O production.

Attiwill & Adams (1996)

Differences between age classes

	stand age		
	Y (25 years)	M (80 years)	O (350+ years)
GHG fluxes			
CO ₂ [mg CO ₂ -C m ⁻² h ⁻¹]	84.5 (4.7) ^A	106.1 (4.8) ^B	104.5 (3.6) ^B
CH₄ [ug CH₄-C m ⁻² h ⁻¹]	-54.5 (4.5) ^A	-92.9 (4.0) ^B	-85.9 (3.7) ^B
N ₂ O [ug N ₂ O-N m ⁻² h ⁻¹]	1.2 (1.5) ^A	0.48 (0.5) ^A	5.4 (0.7) ^B
Soil parameter			
рН	5.1 (0.1) ^A	5.5 (0.0) ^B	5.1 (0.0) ^A
C:N ratio	25.9 (0.6) ^A	23.0 (0.4) ^B	20.2 (0.6) ^C
Bulk density [g cm ⁻³]	0.6 (0.0) ^A	0.8 (0.0) ^B	0.6 (0.0) ^A
Soil moisture [% g g ⁻¹]	33.6 (0.0) ^A	41 (0.1) ^B	61.8 (0.1) ^C
Soil NH₄+ [mg kg⁻¹]	7.7 (0.8) ^A	5.8 (0.4) ^A	15.2 (2.2) ^B
Soil NO ₃ - [mg kg ⁻¹]	0.5 (0.1) ^A	0.1 (0.0) ^A	9.3 (1.1) ^B
Clay [%]	27.3 (0.4)	27.8 (0.2)	25.5 (1.5)
Sand [%]	53.5 (0.9)	43.1 (2.7)	48.1 (3.3)
Silt [%]	19.2 (1.4)	29.1 (2.4)	26.5 (2.3)

Temporal variability of soil GHG fluxes in relation to NEE (O)

Soil GHG fluxes vs. NEE (O)

Comparison with other forest systems

- Measured mean CH₄ uptake rates at the O and M forest stand are around 5 times higher than the average uptake rates reported for European and N. American forests
- CH₄ uptake rates are the highest reported for Australian forest systems
- N₂O emissions are lower than those in similar European forests because of tight nutrient cycling and high soil C:N ratios
- Soil N₂O and CH₄ fluxes in this forest system are two order of magnitude smaller than soil respiration
- N₂O emissions in this forest soil system offset their CH₄ uptake benefit on a CO₂-equivalent basis

MELBOURNE

© Copyright The University of Melbourne 2008

MELBOURNE

© Copyright The University of Melbourne 2008

Where to from here?

Soil methane oxidation

Spatial variability of soil GHG fluxes (O)

Total ecosystem GHG budget (O) for all measuring dates

Martin et al. 2007

