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Turbulence is a recognisable state of nature but it has no rigid

 

definition; it is rather like certain diseases 
which are defined by a collection of symptoms called a syndrome.

 

In the case of turbulence these 
‘symptoms’

 

include randomness with a finite probability density function, strong vorticity, a complex 
highly three-dimensional velocity field, motion over a large and continuous range of length scales, and 
greatly increased effective values of viscosity and diffusivity.

 

Many ‘chaotic’

 

flows, such as particular 
kinds of thermal convection, have some, but not all, of these ‘symptoms’. J.Hunt
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Observation
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Questions that we address in this presentation

•What are the origins of these motions?

•Can they be explained with existing theory?

•What are the implications for observations of nocturnal 
ecosystem exchange?



CSIRO canopy turbulence

Experimental layout

Profiles 
temperature (Type T Thermocouples)
wind (2D Gill Windsonics)
0.5, 4.5, 10.5, 18.5, 34.5, 42.5, 54.5, 70

 

m

Profiles 
temperature (Type T Thermocouples)
wind (3D Sonics)
0.8, 1.4, 2.2, 2.9, 4.4, 5.8, 10.8

 

m
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Time series sub-canopy temperature (10 m)
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Meteorological conditions

net radiation

friction velocity

Monin-Obhukov length
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Above and within canopy temperature spectra
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Multi level temperature time series:
 coherency
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Gravity waves?

•How do canopy waves develop?

•Can we explain their amplitude and periodicity?

• Why are they observed in the canopy only and not above?
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Profiles of wind speed and their 
influence on hydrodynamic stability

Raupach et al.1996. BLM
Finnigan 2000. Ann. Rev. Fluid Mech. 
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Development of stability
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Profiles of wind speed and temperature
 and their influence on hydrodynamic stability

Belcher et al. 2007. Ecol.Applications
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Profiles of wind speed and temperature
 and their influence on hydrodynamic stability

Belcher et al. 2007. Ecol.Applications
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Stability distribution a result of different transport 
mechanisms of momentum and scalars
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Amplitude with height

evanescent
Presence of ground: trapped →large amplitude
Role of aerodynamic drag → no complete 
theory of hydrodynamic stability with non-linear 
drag exists
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Brunt–Väisälä
 

frequency

The Brunt–Väisälä frequency, or buoyancy frequency, 
is the frequency at which a vertically displaced parcel will oscillate
within a statically stable environment. 
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Periodicity
Carruthers and Hunt (1986):
developed a linear theory at the interface 
between a turbulent region and a stably 
stratified layer. 

Theory shows that in the stratified layer 
motions with frequency f > N decay rapidly with 
distance z from the interface.

Observed buoyancy period PBV

 

=2π/N at the 
interface (98 ±

 

23 s) corresponds nicely with 
period of observed coherent motions.
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Horizontal phase speed and direction of wave 
propagation
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Summary

Above canopy flow can support turbulence while in canopy flow is

 

very stable 
and decoupled.

Due to shear instability at canopy top we find that
DESPITE SUPPRESSED TURBULENCE IN-CANOPY SCALAR FLUCTUATIONS 
CAN BE VERY SUBSTANTIAL

This must be considered when measuring land atmosphere exchange:
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Conclusions
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Conclusions

Improvements (experimental):
•

 

Careful experimental design
•

 

Faster instruments (and subsequent filtering)
•

 

Novel techniques 
Improvements (theory):
•

 

Include drag, static stability, presence of ground into linear stability 
analysis

Scalar fluctuations lead to increased random errors.
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Conclusions

Above canopy u* is > 0.5ms-1

 

but 
the flow within the canopy
• remains decoupled from the flow above
• is subject to large amplitude waves
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Under stable conditions when turbulence has collapsed 
drainage flows develop when the hydrostatic pressure gradient 
outbalances the sum of hydrodynamic pressure gradient and 
canopy drag

Tumbarumba 06-13.03.2005

wind velocities u(z) normalized with u(6m)
and wind direction. Slope wind direction is 

Development of drainage flows
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Error in Ri due to interpolation
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Terms contributing to WKE and TKE
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Excitation of gravity waves by KH instabilities
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