Soil-Litter-Iso: a new isotopically-enabled model for one-dimensional heat and moisture transfer in soils

Vanessa Haverd, Matthas Cuntz, Ray Leuning, Eva van Gorsel, Steve Zegelin June 24, 2009

New soil scheme accounts for vapour-phase soil moisture, litter, isotopes

Litter supresses predicted soil evaporation (Tumbarumba)

CSIRO

Litter improves simulation of ET at Tumbarumba

Litter improves simulation of soil moisture at Tumbarumba

Inclusion of vapour diffusion within soil improves prediction of surface soil moisture

(Data for Adelong from Jeff Walker, U. Melb.)

Expect better prediction of remotely-sensed microwave brightness temperature, which is very sensitive to soil moisture in the top 2 cm
Testing of model at continental scale

Oznet Soil Moisture: 0-8 cm

CSIRO

Modelling stable isotope species (HDO and $H_2^{18}O$) in soil moisture. Why?

- Provide excellent tests of numerical robustness and vapour/liquid fluxes in main code
- ¹⁸O in atmospheric CO₂ is a potentially strong constraint on the partition between photosynthesis and respiration at global scale
 - Requires accurate formulation of ¹⁸O exchange at the land surface
- Advection/diffusion equation required for isotopes could be adapted to model transport of any other soil solute
- Lack of robust, efficient isotopically-enabled soil models in literature
 - Particularly no inclusion of vapour diffusion

Stable isotope transport: processes

H ₂ O	HDO
q _i	c _{HDO,I} q _I
zero	$-D_l^{HDO} \frac{dc_{HDO,l}}{dz}$
q_{v}	$\frac{D_v^{HDO}}{D_v^{H_2O}} \alpha^+ c_{HDO,l} q_v$
zero	$D_{v}^{HDO}c_{v}\alpha^{+}\frac{dc_{HDO,l}}{dz}$
$\frac{C_{v,s} - C_{v,a}}{r_{bw}}$	$\frac{\alpha^+ c_{HDO,l,s} c_{v,s} - R_a c_{v,a}}{r_{bw} / \alpha_k}$
	$ \mathbf{H}_{2}\mathbf{O} $ q_{l} $zero$ q_{v} $zero$ $\underline{C_{v,s} - C_{v,a}}$ r_{bw}

CSIRO

Test Case 1: No fractionating processes ($\delta_{soil,0} = \delta_a = -8 \%$)

Test Case 2: No fractionating processes ($\delta_{soil,0} = -8 \%$; $\delta_a = -15 \%$)

CSIRO

Test Case 3: Equilibrium fractionation ($\delta_{soil,0} = \delta_a = -8 \%$)

Test Case 4: Equilibrium fractionation ($\delta_{\text{soil},0}$ = -8 ‰ ; δ_{a} = -15 ‰)

Test Case 5: Equilibrium fractionation and liquid diffusion ($\delta_{soil,0}$ = -8 ‰ ; δ_a = -15 ‰)

CSIRO

Test Case 6: Equilibrium fractionation, liquid diffusion and vapour diffusion ($\delta_{soil,0} = -8 \%$; $\delta_a = -15 \%$)

¹⁸O in soil moisture: importance of vapour diffusion

Simulated δ^{18} O after 50 days of drying

Semi-Analytical Solution: steady state evaporation from nonisothermal unsaturated soil column (Barnes and Allison 1984)

Robustness to model layer thicknesses

Summary

Consideration of vapour-phase transfer of soil moisture important for predicting:

- •soil evaporation from dry soils
- •surface soil moisture content
- •Isotopic composition of soil moisture

Soil-Litter-Iso

- •Currently being tested as a switchable option in CABLE
- •Numerically robust and efficient
- •Accurate even with thick (2 cm) surface layer
- •Passes the same tests as state-of-the-art model (Sispat-Iso 2005) but much more applicable due to efficiency

Thank you

CMAR

Vanessa Haverd Research Scientist

Phone: 02 62465981 Email: vanessa.haverd@csiro.au Contact Us Phone: 1300 363 400 or +61 3 9545 2176 Email: enquiries@csiro.au Web: www.csiro.au

