Eddy covariance at Otway: A tale of two analysers

Ray Leuning

Steve Zegelin, Dale Hughes, Vanessa Haverd, Eva van Gorsel

Australian Government The Centre for Australian Weather and Climate Research A partnership between CSIRO and the Bureau of Meteorology

Bureau of Meteorology

With these assumptions

- Horizontally homogeneous flow

Eddy fluxes: Sonic anemometer gives

$$\overline{u}, \overline{v}, \overline{w} \quad u', v', w'$$
$$H = \rho \overline{c}_{pd} \overline{w'} T_{v}'$$

Where sonic virtual temperature is

 $T_v = T(1+0.514q)$

Require H₂O & CO₂

$$\lambda E = \lambda \overline{c_d w' \chi'_v}$$
$$F_c = \overline{c_d w' \chi'_c}$$

Note correlation of vertical velocity and mixing ratios

Measures mol m⁻³ in optical path, **not** required mixing ratios $\chi_v \chi_c$

Eddy fluxes have been expressed in terms of mixing ratio.

 $\overline{F_c} = \overline{c_d} w' \chi'_c$

What to do?

Steady state, horizontally homogeneous flow

• Open-path instruments

$$\overline{F_{c}} = \overline{c}_{d} \overline{w' \chi_{c}} = \overline{wc_{c}} + \overline{\chi_{c}} \left[\overline{wc_{v}} + \overline{c} \frac{\overline{w'T'}}{\overline{T}} \right]$$
Raw CO₂ flux Water vapor flux Heat flux

What about non-steady state, horizontally homogeneous flow?

Magnitude of WPL corrections for CO₂

- add to raw flux

Leuning & Judd, 1996

Frequency domain - Covariance

 $C_{w\chi c}$ = contribution of total covariance of $w\chi_c$ per unit dnApproximation because calculations are over a finite time interval Δt Instrument array is a lowpass frequency filter

Line-averaging along instrument path

- loss of variance
- Spatial separation between instruments
 - loss of covariance
 - Samples eddies > ~2d

A case study – zero CO_2 flux over a car park

Kondo and Tsukamoto (2008)

WPL correction

Correction may be larger than true flux

Measurements of heat and water vapor fluxes must be accurate and have same frequency response as open-path CO₂ system

Frequency Response Corrections

Define correction factor

$$C_{F} = \frac{\int_{0}^{\infty} C_{wc}(f) df}{\int_{0}^{\infty} G_{wc}(f) C_{wc}(f) df} \quad \text{filtered cospectrum}$$
filter function

 $C_F > 1$, typically

(Leuning and Moncrieff, 1990; Leuning & Judd 1996)

Open path measurements – calculation sequence

1)
$$\overline{H} = \overline{\rho}c_{p}\overline{w'T'}$$

2) $\overline{E} = (1 + \overline{\chi}_{v})\left[\overline{w'c_{v}} + \frac{\overline{c}_{v}}{\overline{T}}\frac{\overline{H}}{\overline{\rho}c_{p}}\right]$
3) $\overline{F}_{c} = \overline{w'c_{c}} + \overline{c}_{c}\left[\frac{\overline{E}}{\overline{c}} + \frac{\overline{H}}{\overline{\rho}c_{p}\overline{T}}\right]$

Assumes *H*, *E* & F_c have already been corrected for high & low frequency filtering

WPL corrections to open path measurements

Conversion of LI7500 to closed-path analyser

Modified LI7500

Closed-path analyser

 Measure c_c, c_v, T & P simultaneously in gas analyser and calculate mixing ratio at sampling rate used for eddy covariance

$$\chi_{v} = \frac{c_{v}}{P_{i}/(RT_{i}) - c_{v}}, \ \chi_{c} = \frac{c_{c}}{P_{i}/(RT_{i}) - c_{v}}$$

- Must also consider
 - Time-lag
 - Hi-frequency attenuation by air flow in tubing

Closed-path gas sampling

Lag at maximum correlation for closed path

High Frequency Attenuation - Closed path

- Tubing acts like a low-pass filter by mixing the air
- Higher frequencies strongly attenuated depends on:
 - Flow rate through tube
 - Tube diameter, length and material
 - Adsorption/desorption of gases on filter tubing walls

(Leuning and Moncrieff, 1990; Leuning & Judd 1996)

Open path spectra and co-spectra

Closed path spectra and co-spectra

Time series of λE

Time series of F_c

Time series of R_n -G-J_s, H + LE & H

Energy balance

Modelling with CABLE

Summary (1):

- Open path analyser
- Strengths
 - Excellent spectral & cospectral response compared to temperature
 - Little need for high frequency correction due to line-averaging and instrument separation when measurements made at 4.5 m

Weakness

- High rates of data loss at Otway mist, rain ...
- WPL corrections to CO₂ fluxes very large when H is large

Summary (2):

- Closed path analyser
- Low rate of data loss due to rain, mist ...
- Calculate mixing ratios in real time no WPL correction needed
- Strengths:CO₂
 - Good spectral & cospectral response compared to temperature
 - Well-defined lag as a function of flow rate
 - Close agreement with open path instrument

Strengths:H₂O

Agreement with open path instrument can be obtained with correction for loss of covariance at high frequencies

Weakness

- Poor spectral & cospectral response compared to temperature
- Variable lag time @ maximum correlation depends on flow rate and rel. humidity

- Lack of energy closure
 - Better closure for open than closed path instruments
 - Change in energy storage term on layer above soil heat flux plates is very important but does not explain lack of energy closure
 - Advection?
 - Horizontal temperature gradients -> advection < 5 W m⁻²
 - Vertical advection needs non-zero mass flux of dry air