

# Carbon and water balance of a 'belt and alley' landscape

Phil Ward, Shayne Micin and Ian Fillery

June 25, 2009





## Why put trees in agricultural landscapes?

#### **Pros**

- Trees are large
  - Wind erosion control
  - Shelter for livestock
- Trees are deep rooted
  - Intercept lateral water flow
  - Potential dryland salinity control
    - Decrease groundwater recharge
    - Can increase groundwater discharge
- Trees are potentially productive
  - Mallee oil
  - Energy
  - Carbon sequestration

#### <u>Cons</u>

- Trees are large
  - Get in the way of machinery
  - · Hard to move livestock
- Trees are deep rooted
  - Compete with crop
  - Dry soil out prior to crop establishment
- Trees are expensive
  - Establishment cost
  - Crop replacement cost



### Quantifying water use and growth

#### • Leaf level

- Gas exchange
- Porometry

#### Plant level

- Sap flow
- Sampling for growth rate
  - Above-ground
  - Below-ground
- Scaling difficulty

#### Landscape level

• ?





## Quantifying water and carbon – paddock scale

- Eddy covariance
  - Water and CO<sub>2</sub>
  - 3-D wind speed
  - Both 20 times per second
  - Measure above canopy
- Used extensively for native vegetation, and relatively uniform canopies
- Can we apply this to 'belt and alley' landscapes?





## The paddock – 1000 x 750 m



CSIRO. Paddock-scale water use in alley-tarming systems



#### Data Collection in two paddocks ± trees

• Trees

- ≈ 2 m high in November 2005
- ≈ 3 m high in October 2006
- ≈ 4 m high in November 2007
- November 23, 2005 to January 12, 2006, z<sub>m</sub> = 3.7 m
  - Data for 40 out of 41 days
- May 25, 2006 to October 18, 2006,  $z_m = 3.7 5.4 m$ 
  - Data for 127 out of 146 days
- April 4, 2007 to May 7, 2008, z<sub>m</sub> = 6.0 m
  - Data for 306 out of 390 days



#### All the ET data





#### May – October 2006 water use





#### Yearly water use 2007/08





#### Tree belt water use estimates

| Source                | Summer water<br>use based on<br>crown area<br>(mm/day) | Notes                                                               |
|-----------------------|--------------------------------------------------------|---------------------------------------------------------------------|
| White et al.<br>2002  | 1.7                                                    | Mixed <i>Eucalyptus</i> , 12 years old, with access to groundwater. |
| Wildy et al.<br>2004  | 3.3 – 5.8                                              | <i>E. kochii</i> , 6-7 yr old, variable access to groundwater.      |
| Carter et al.<br>2005 | 2.6 - 6.4                                              | <i>E. horistes</i> , 4 yr old, variable access to groundwater.      |
| Current<br>study      | 0.7                                                    | <i>E. polybractea,</i> 6-7 yr old, assuming 15% landscape coverage  |

#### Growing season carbon uptake





#### 12 months carbon uptake





## Carbon uptake

- Total difference over 12 months 4 t CO<sub>2</sub>/ha
  - Will vary depending on annual component in alleys
- Summer difference 1.7 t CO<sub>2</sub>/ha
  - Attributable to presence of oil mallees
- Few published estimates available for comparison



## Conclusions

- Eddy covariance is suitable for paddock-scale water use and carbon uptake measurements
- Lower estimates than those derived from scaling up sap flow.
- Oil mallee trees occupying 15-20% of a paddock used an extra 75 mm in 2007/08 over the whole paddock. This is equivalent to about 375 mm in the area directly under the trees.
- Extra water use at the paddock scale was approximately equal to the expected lucerne performance.
- Extra water was obtained from deep soil stores (water use > rainfall), and these rates of water use cannot be expected to continue indefinitely.
- Oil mallees likely to assist in salinity control, but modelling of impact of heterogeneous patterns of soil water will be necessary



# Conclusions (2)

- As expected, oil mallees resulted in greater CO<sub>2</sub> sequestration
- Difference was marginal, but might assist with economics of tree adoption
- Roughly equivalent to increasing soil C by 10% (ie from 0.5% to 0.55%)
- Further research necessary to quantify different arrangements of tree belts.



# Thank you

Phone: 1300 363 400 or +61 3 9545 2176 Email: enquiries@csiro.au Web: www.csiro.au



**Contact Us**