CO₂ flux investigations for intensive dairy farms and wetlands in the Waikato Region, NZ

Susanna Rutledge
Dave Campbell
Louis Schipper

Soil C changes under pastoral agriculture

	Change in soil C (0-30 cm)		
	(T C ha ⁻¹ y ⁻¹⁾		
Dairy	0.73***		
Drystock flat	-0.14 <i>ns</i>		
Drystock hill	0.52*		
Drystock tussock	0.0 <i>n</i> s		

Larry Burrows

- → Soils under dairying are the ones that lost carbon
- → Opportunity to increase storage

Schipper LA, Parfitt RL, Ross C, Baisden WT, Claydon JJ, Fraser S (2010) Gains and losses in C and N stocks of New Zealand pasture soils depend on land use. Agriculture, Ecosystems & Environment, 139, 611-617.

What factors drive changes in soil C?

- land-use change
- economic drivers
- inter-annual variability
- climate change

Net ecosystem carbon balance

 Eddy covariance to measure net CO₂ exchanges in a pasture system

- 2. Chamber to measure soil respiration
- 3. Farm records for imports/outputs

New Zealand Agricultural Greenhouse Gas Research Centre (NZAGRC)

- 100% government funded
- Aims to mitigate agricultural GHG emissions without reducing productivity
- Mostly pastures
- N₂O, CH₄, soil carbon and farm systems

Goal for our NZAGRC work

 To determine the effect of management practices on soil carbon balance of dairy pastures with the <u>aim</u> to increase C gains or decrease losses

- To increase C soil stock:
 - Increase C input (mostly by increasing root inputs)
 - decrease C output (mostly by decreasing decomposition)

Experiment 1: interannual variation atScott Farm

- Scott farm study site
 (DairyNZ[≠] research farm)
- established Dec 2007

Effect of weather on CO₂ exchange

Mudge PL, Wallace DF, Rutledge S, Campbell DI, Schipper LA, Hosking CL (submitted) Carbon balance of an intensively grazed temperate pasture in two climatically contrasting years. Submitted to Agriculture, Ecosystems & Environment.

C budget of Scott Farm

Flux	2008	2009	2010
Photosynthesis	19,835	24,045	
Respiration	18,225	21,755	
-NEE	+1,610	+2,295	
Feed import	+175	0	
Milk export	-795	-930	
Silage export	-65	-100	
Methane	-200	-215	
Erosion	assumed 0	assumed 0	
Leaching	-55	-55	
NECB	590 ± 560	900 ± 560	

Units kg C ha-1yr-1

Experiment 2: Change in outputs - effect of cultivation -

- Plan: Study the effect of a cultivation
- Hypothesis:
 C lost by disturbance of cultivation and stopping
 of photosynthesis, but more vigorous growth
 (=C fixation) after renovation

Cultivation - EC

Preliminary data: only midday values (between 10 am and 2 pm), bin average

Experiment 3: Changes in input - different pasture species -

- Plan: Compare conventional rye grass + clover with a cultivar or mix that has more and/or deeper roots
- Hypothesis: more roots → more C input into the soil

Wetland work: Opuatia 2003-2005

- → depressed light response
- → caused by photoinhibition and photorespiration

Paper submitted to Ecosystems: DI Campbell, B Thornburrow, BK Sorrell, S Rutledge, Peatland CO₂ exchange impacted by depression of photosynthesis at high light, submitted.

Planned wetland work

- Part of larger programme which aims to improve restoration and preservation of wetlands
- Long term site at Kopouatai wetland
- Aimed to increase understanding of ecosystem functioning

Acknowledgements

Paul Mudge

Dirk Wallace

Craig Hosking

Aaron Wall

John Hunt

David Whitehead

Sam Grover

