

Instrument-induced biases in open-path CO₂ flux measurements

I. Bogoev¹, M. Helbig², O. Sonnentag², K. Wischnewski²

¹Campbell Scientific, Inc., UT, USA, ²Université de Montréal, QC, Canada

16-19 November, 2015. Hobart, Australia

Sensor-specific uncertainties affect inter-site comparability

Different designs, geometries, shapes, performance, strengths, weaknesses, limitations Open-path, co-located, separated, horizontally symmetrical, omnidirectional

Motivation for this study: is it feasible to measure CO_2 flux with open path sensors?

- Systematic biases in CO₂ fluxes measured by open- and closed-path analyzers (Norunda?)
- Open-path systems measure more negative daytime uptake during cold season
- Ecologically unreasonable observations of net ecosystem exchange with open-path analyzers

Amiro, (2006); *Hirata et al.*, (2007); *Ono et al.*, (2008); *Amiro*, (2010); *Hommeltenberget al.*, (2014)

Motivation for this study (continued)

Burba et al./ AMS (2006)

- Instrument-induced surface
 heating issues in cold climates
 Grelle et al., (2007)
- Semi-empirical, site- and orientation-specific correction

Burba et al., (2008)

Is surface heating affecting other open-path gas analyzers?

Challenges of open-path CO₂ flux measurements

 $F_c = \rho_d \overline{w' \mathbf{X}_c'}$

 $F_{c} = \overline{w'\rho_{c}'} + \mu \frac{\rho_{c}}{\rho_{d}} \overline{w'\rho_{v}'} + (1 + \mu \frac{\rho_{v}}{\rho_{d}}) \frac{\rho_{c}}{T_{a}} \overline{w'T_{a}'}$

- The WPL terms should accurately represent the conditions in the sensing path of the gas analyzer
- The magnitude of the interferences (T` and p`,) is large especially temperature!
- All sensors need to have adequate and similar
 frequency response to capture the fast fluctuations of T_a,
 w, ρ_v and ρ_c

Challenges of open-path CO₂ flux measurements

 $F_c = \rho_d \overline{w' \mathbf{X}_c'}$

 $F_{c} = \overline{w'\rho_{c}'} + \mu \frac{\rho_{c}}{\rho_{d}} \overline{w'\rho_{v}'} + (1 + \mu \frac{\rho_{v}}{\rho_{d}}) \frac{\rho_{c}}{T_{a}} \overline{w'T_{a}'}$

- To preserve the covariance all measurements need to be well synchronized in time and space
- Increased requirements for **absolute accuracy** of T_a , ρ_v , ρ_d and ρ_c measurements

Challenges of open-path CO₂ flux measurements

$$F_c = \rho_d \overline{w' \mathbf{X}_c'}$$

$$F_{c} = \overline{w'\rho_{c}'} + \mu \frac{\rho_{c}}{\rho_{d}} \overline{w'\rho_{v}'} + (1 + \mu \frac{\rho_{v}}{\rho_{d}}) \frac{\rho_{c}}{T_{a}} \overline{w'T_{a}'}$$

- The sensor is in-situ and exposed to the elements
- Adverse effects of weather (rain, snow, dust, condensation, solar radiation) can change the calibration
- Large range of ambient temperatures can cause calibration drifts

Why would you use an open-path CO₂ flux system?

- Simple and reliable (no pump, no filter, no tubing)
- Good frequency response (no tube delays, minimal spectral attenuation)
- Low power (<6W)</p>

Winter time CO₂ flux measurements over snow-covered surface

- Air temperature in the gas-analyzer sensing path same as the CSTA3
- Similar sensible heat flux measured with the IRGASON and the CSTA3
- No apparent CO₂ uptake observed

Bogoev, EGU (2014)

Is instrument surface heating a problem?

- Air temperature in the gas-analyzer sensing path same as the CSTA3
- Similar sensible heat flux measured with the IRGASON and the CSTA3

Picture by Manuel Helbig at Scotty Creek

The tale of two nearby flux sites at Scotty Creek watershed

by Manuel Helbig and Oliver Sonnentag

Site A – Forested peat plateaus landscape Site B – Bog peatland

Winter time apparent CO₂ uptake observed at the forested peatland site

- Identical open-path sensors at both sites
- But different sensible heat regimes due to differences in the surface albedo (0.75-0.9 for fresh snow, 0.15-0.3 conifer forest with snow)

Comparison of CO_2 mixing ratios and fluxes measured by open- and closed-path gas analyzer

During periods with significant **sensible** heat:

- IRGASON measures increased CO₂ variance compared to the CPEC200
- IRGASON measures more CO₂ uptake

Comparison of CO₂ fluxes measured by open- and closed-path gas analyzer

Comparison of CO_2 spectra measured by open- and closed-path gas analyzer

Inadequate correction for fast temperature related spectroscopic effects?

Spectroscopic effects (for Campbell analyzers)

$$A = \frac{N}{(\Delta \nu)} \int_{\nu_1}^{\nu_2} \left\{ 1 - \exp\left(-\frac{S_i \alpha_i cL}{\pi \left[(\nu - \nu_0)^2 + \alpha_i^2\right]}\right) \right\} d\nu$$

A = Absorbed light energy in the spectral interval

- N = Number of absorption lines in the spectral interval
- v = Wave number of the individual spectral line
- c = Density of the absorbing gas
- L = Path length
- S_i = Strength of the individual line
- α_i = Half-width of the individual line

$$S_i = f(T,P)$$
 $\alpha_i = f(T,P)$

 $\alpha(P,T) = \alpha_0 \frac{P}{P_0} \left(\frac{T_0}{T}\right)^{1/2}$

Jamieson et al. (1963)

T = Air temperature, P = barometric pressure

Fast-response air-temperature measurement

Slow-response air-temperature measurement

Results of using fast-response air-temperature in the conversion of absorption into CO₂ density

Fc_{OP} - Fc_{CP}

Cumulative flux results (Scotty Creek)

Conclusions:

- Systematic biases in CO₂ fluxes measured with open-path analyzers can be minimized by using fast air-temperature for the spectroscopic corrections
- No need for instrument self-heating corrections (IRGASON and EC150)
- Measuring CO₂ fluxes with open-path analyzers is feasible

THANK YOU

