

Half-Gaussian Fitting Method for Estimating Fractional Vegetation Cover from UAV Images.

Linyuan Li, Xihan Mu, Wanjuan Song, Craig Macfarlane, Guangjian Yan, Kai Yan

Summary

- Increasing height of flight reduces spatial resolution and increases the fraction of mixed pixels in LARS images in LARS images.
- Existing methods for estimating fractional vegetation cover (FVC) from proximal images don't work well on LARS images.
- Selecting only 'pure' pixels to derive the Gaussian distributions reduces the influence of 'mixed' pixels on image analysis.
- Half-Gaussian fitting to decompose a Gaussian mixture model provides a more robust and accurate estimate of fractional vegetation cover of crops from LARS images.
- LARS images may require customized image processing and analysis methods.

Background

•Fractional vegetation cover (FVC) plays a key role in land surface processes.

•Low-altitude remote-sensing (LARS) has advantages over both proximal and satellite remote-sensing platforms: flexible timing, inexpensive, large spatial coverage...

•Unmanned aerial vehicles (UAVs) are flown at a wide range of heights, often with the same camera and lens, and acquired images have a wide range of spatial resolution.

•Image analysis methods developed for proximal and satellite remote-sensing imagery are poorly suited to LARS owing to many mixed pixels.

Decreasing spatial resolution \rightarrow

Proximal

Vegetation indices

Spatial resolution versus height of flight

More mixed pixels as height increases

Proximal (7 m)

LARS (70 m)

The proximal approach

Histograms with many mixed pixels

Aim

- To compare existing image analysis methods for estimating FVC from RGB images, with a new method that:
 - allows for many mixed pixels and weakly bimodal histograms
 - yields a value of FVC that is independent of height of flight
- Comparison methods:
 - LAB2 (Macfarlane and Ogden 2012)
 - SHAR-LABFVC (Song et al. 2015)
- New method:
 - fits half-Gaussian distributions to pure foreground (vegetation) and background pixels in the CIE L*a*b* color space
 - decomposes a Gaussian mixture model using the full Gaussian distributions

HAGFVC

RGB color space. By SharkD - Own work, GFDL, https://commons.wikimedia.org/w/index.php?curid=3375025

HAGFVC

$$w_{iv} \cdot erfc\left(\frac{x - u_{iv}}{\sqrt{2} \cdot \sigma_{iv}}\right) = w_{ib} \cdot erfc\left(\frac{x - u_{ib}}{\sqrt{2} \cdot \sigma_{ib}}\right)$$

HAGFVC

$$w_{iv} \cdot erfc\left(\frac{x - u_{iv}}{\sqrt{2} \cdot \sigma_{iv}}\right) = w_{ib} \cdot erfc\left(\frac{x - u_{ib}}{\sqrt{2} \cdot \sigma_{ib}}\right)$$

Experimental site

- Weichang County, Hebei Province, China.
- 10 m × 8 m plot located in a cornfield (bottom-right frame).
- Images captured at three stages of growth in 2015, with FVC 0.2-0.8.

Materials and methods

- Model X-601 hexacopter (Chaoyi Corporation, Beijing, China)
- Sony Nex-5R 16MP mirrorless digital camera, focal length 16mm.
- Various heights of flight.

Date	Time	Growth Stage	Mean Leaf Width (cm)	Number of Images	Flight Height (m)	Reference FVC	Illumination
28/06	11:30 am	V4	2.7	14	3 - 29 (step=2 m)	0.223	diffuse light
11/07	06:30 pm	V6	4.1	26	3 – 53 (step=2 m)	0.345	direct light
31/07	05:45 pm	V8	8.8	24	7- 53 (step=2 m)	0.817	diffuse light (cloudy day)

Method comparison

FVC comparison among the three methods in three vegetative growth stages, i.e., (a) V4, (b) V6 and (c) V8. Vn indicates n leaves with collars visible. The TrueValue-SHAR and TrueValue-LAB2 respectively represent the FVC derived by using the SHAR-LABFVC and LAB2 methods in field measurements

Caveats

- Method only formally tested in one crop with strong contrast between foreground and background. Application to non-agricultural landscapes is uncertain.
- Note that method doesn't 'correctly classify' all pixels because mixed pixels have no correct classification.

Conclusions

- Increasing height of flight reduces spatial resolution and increases the fraction of mixed pixels in LARS images.
- Selecting only 'pure' pixels to derive the Gaussian distributions reduces the influence of 'mixed' pixels on image analysis.
- Half-Gaussian fitting to decompose a Gaussian mixture model yields a more robust and accurate estimate of FVC of crops from LARS images.
- LARS images may require customized image processing and analysis methods.
- Adjusting camera focal length as flight height is increased may increase robustness of FVC estimates.

Conclusions

- Increasing height of flight reduces spatial resolution and increases the fraction of mixed pixels in LARS images.
- Selecting only 'pure' pixels to derive the Gaussian distributions reduces the influence of 'mixed' pixels on image analysis.
- Half-Gaussian fitting to decompose a Gaussian mixture model yields a more robust and accurate estimate of FVC of crops from LARS images.
- LARS images may require customized image processing and analysis methods.
- Adjusting camera focal length as flight height is increased may increase robustness of FVC estimates.

Don't fly too close to the sun.

#5702

ToonClips.com

service@toonclips.con

X-601 Specifications

Flight mode: artificial remote control, autonomous hover, autonomous route;

No load off weight: 3.5Kg;

Maximum takeoff weight: 7.5Kg;

Maximum mission load: 4Kg;

Maximum life time: 40 minutes;

Cruising speed: 3 ~ 50Km / h;

Flight height: ≤1000 m (relative height);

Maximum ceiling: 5,000 meters

Effective control radius: 2Km (expandable to 5Km);

Navigation: GPS navigation / Beidou navigation / GPS and Beidou integrated navigation

Horizontal navigation error: ≤2.5 m;

Normal landing wind speed: ≤ 6 ;

Can set the maximum flight radius and the maximum flight height, beyond the border automatically enter the default mode;

After the data link is interrupted, it will automatically return or continue the route task (can be set);

The remote-sensing approach

Samseemoung et al. (2012) Application of low altitude remote sensing (LARS) platform for monitoring crop growth and weed infestation in a soybean plantation. Precision Agriculture. 13:611-27.

CSIR