Contrasting ecophysiology at the Ti-Tree East OzFlux site and nearby riparian woodland

Rachael H. Nolan, Tonantzin Tarin Terrazas, Nadia S. Santini, James Cleverly, Derek Eamus

> Terrestrial Ecohydrology Research Group University of Technology Sydney

Study area - location

Rainfall zones: http://www.bom.gov.au

Study area – vegetation

Isohydry versus anisohydry

- Isohydry:
 - tight stomatal regulation
 - small changes in minimum Ψ_{leaf}
- Importance of stomatal regulation strategies
 - vulnerability to mortality
 - ecosystem scale fluxes
 - Is stomatal regulation a function of ecohydrological niche?

Today's presentation

1. Field studies:

- Characterization of iso/anisohydry
- Plant water-use traits
- Photosynthetic traits
- 2. Glasshouse study
 - Responses to drought
- 3. Conclusions

Pre-dawn Ψ_{leaf}

Pre-dawn Ψ_{leaf}

Seasonal Ψ_{leaf}

Plant water-use traits

Photosynthetic traits

Summary

- Divergence between Mulga spp. (anisohydric) and other spp.
- Anisohydric behaviour co-ordinated with water-use and photosynthetic traits
- Stomatal regulation strategy is a function of water availability

Summary

Oecologia (2009) 160:643-655 DOI 10.1007/s00442-009-1332-y

PHYSIOLOGICAL ECOLOGY - ORIGINAL PAPER

Convergence of tree water use within an arid-zone woodland

A. P. O'Grady · P. G. Cook · D. Eamus · A. Duguid · J. D. H. Wischusen · T. Fass · D. Worldege

Soil moisture controls on phenology and productivity in a semi-arid critical zone^{*}

James Cleverly ^{a,b,*}, Derek Eamus ^{a,b}, Natalia Restrepo Coupe ^{a,c}, Chao Chen ^d, Wouter Maes ^{a,c,1}, Longhui Li ^a, Ralph Faux ^a, Nadia S. Santini ^a, Rizwana Rumman ^a, Qiang Yu ^a, Alfredo Huete ^{a,c}

Response to drought

Response to drought

Response to drought

Summary

- Anishydric species adjusted osmotically, isohydric species adjusted structurally
- Anisohydric species can respond rapidly to wet / dry periods

Conclusions

- Clear differences between isohydric / anisohydric species
- Likely to be important for ecosystem scale carbon and water fluxes, particularly during and following drought
- Stomatal regulation strategy appears to be coordinated with ecohydrological niche

Acknowledgements

