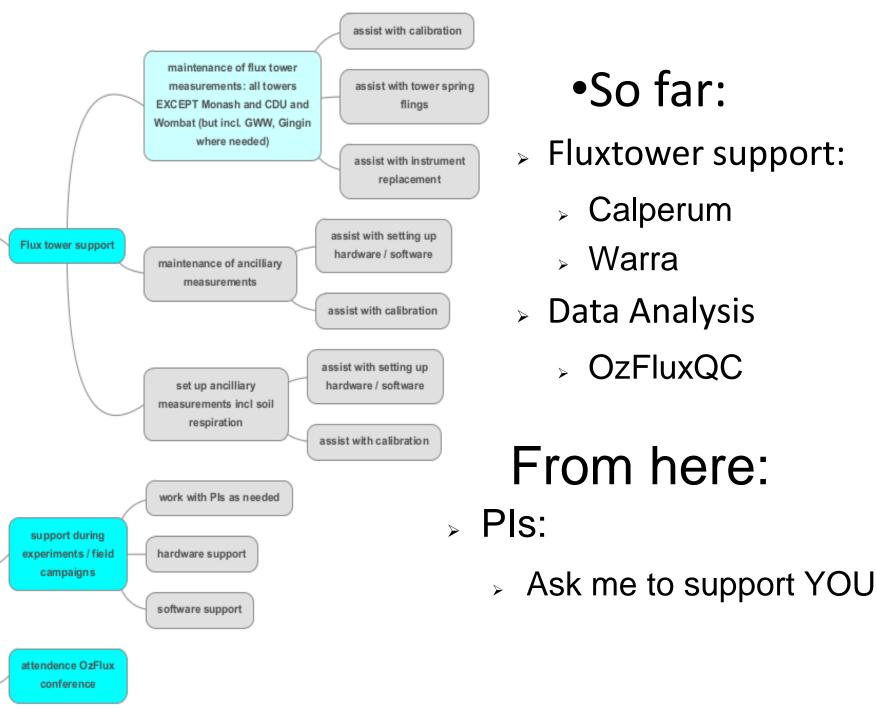

# Oz Mar Technical Support



## •Cacilia M Ewenz

•Located at: •Airborne Research Australia




Flinders

•Adelaide, South Australia

•(Flinders University)

Email: <u>cacilia.ewenz@internode.on.net</u>
<u>caecilia.ewenz@flinders.edu.au</u>
Phone: +61 (8) 8182 4000



# Support OzFlux Groups

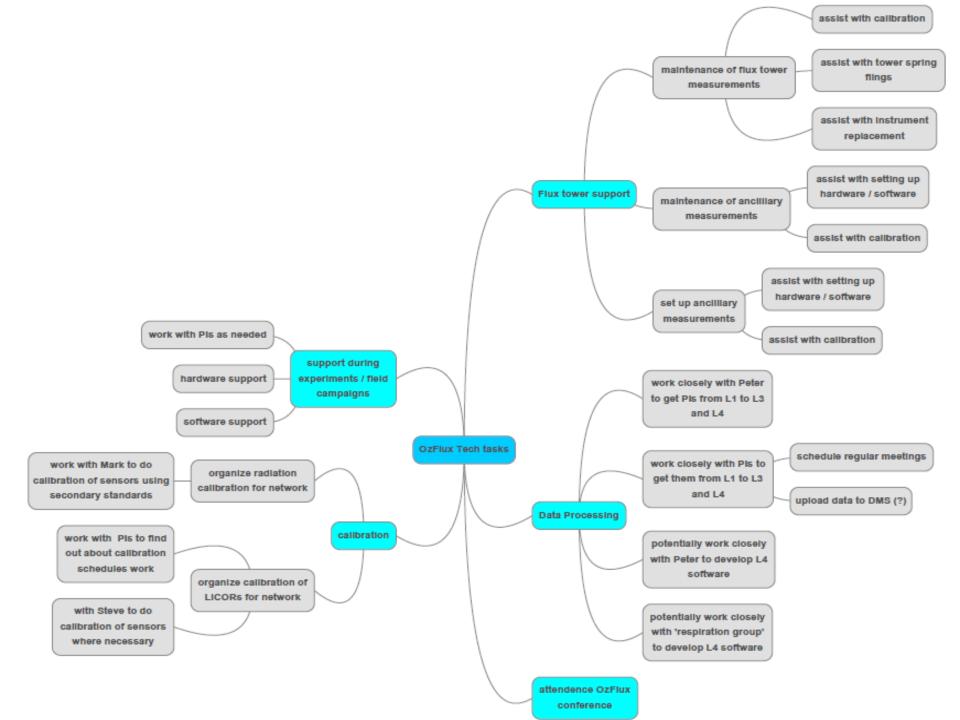
- Flux Tower support
  - Maintenance of measurements
  - Maintenance of ancillary measurements
  - Set up ancillary measurements
- Support during Experiments/Field campaigns
  - > Work with PI's as needed
  - Hardware support
  - Software support
- > OzFlux workshops/meetings

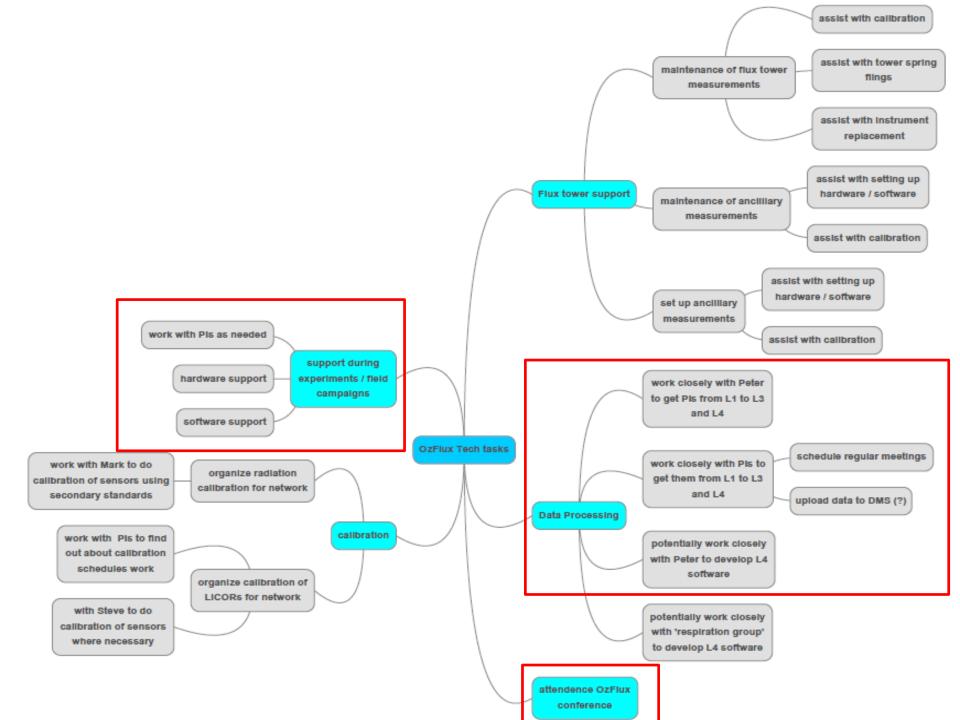
# Maintenance Flux Tower & Ancillary Measurements

- > Assist with calibration
- > Assist with instrument maintenance
- > Assist with instrument replacement
- > Assist with hardware/software set up
- > Assist with data analysis
- > Assist with data quality control

# **Experiments/Field Campaigns**




## **OzFlux Technical Support**


Emma White Monash University

Monash University, Clayton campus, VICTORIA emma.white@monash.edu (03) 9902 4243



Australian and New Zealand Flux Research and Monitoring





# L1 - L3

| Start Year | <u>2013</u><br>Months | <u>2014</u><br>Months |                     |  |
|------------|-----------------------|-----------------------|---------------------|--|
|            | JFMAMJJASO            | D N D                 | J F M A M J J A S O |  |
| 2011       | Whroo                 |                       |                     |  |
| 2000       | Howard Springs        |                       |                     |  |
| 2008       | Sturt Plains          |                       |                     |  |
| 2010       | Riggs Creek           |                       |                     |  |
| 2007       | Daly Uncleared        |                       |                     |  |
| 2008       | Dry River             |                       |                     |  |

# L1 - L3

| Start Year | <u>2013</u><br>Months | <u>2014</u><br>Months |
|------------|-----------------------|-----------------------|
|            | JFMAMJJASONI          | JFMAMJJASO            |
| 2011       | Whroo                 |                       |
| 2000       | Howard Springs        |                       |
| 2008       | Sturt Plains          |                       |
| 2010       | Riggs Creek           |                       |
| 2007       | Daly Uncleared        |                       |
| 2008       | Dry River             |                       |

# Some other stuff

• <u>Analysis</u>:

Technical support within data analysis, past and current years

• Data portal:

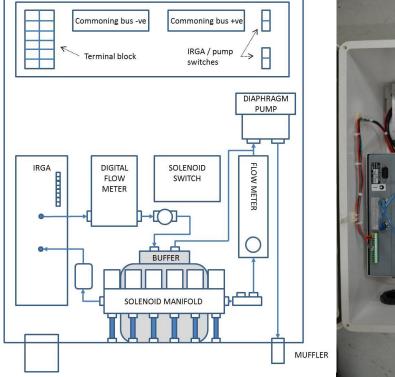
Maintaining the OzFlux Data Portal;

FluxNet submissions;

Data summaries of portal submissions;

Portal audit

Past datasets for further processing (Daly Regrowth and Wallaby sites)


Field work assistance

# Things I've been working on

Ian McHugh ian.mchugh@monash.edu

### Infrastructure and measurement







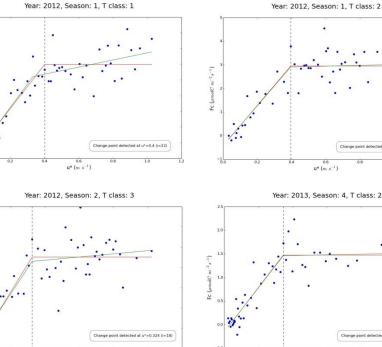
#### • Support arm with dolly for instrument mounting

- Endless cable used to roll dolly along arm
- > Easily replaceable generic aluminium side plates for instrument mounting
- Profile system:
  - > Constantly draws on all lines; sequentially connects routes each level to IRGA (up to 1 cycle / minute)
  - > 2-stage filter intake assemblies smooth fluctuations in  $[CO_2 / H_2O]$

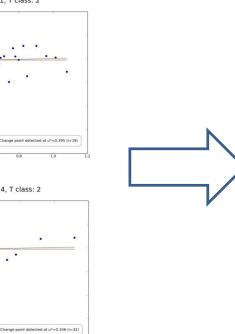
## Data processing (change point detection)

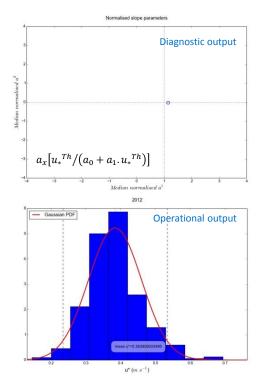
Change point detection (adapted from Barr et al., 2013):

- 1. Stratify nocturnal NEE into fixed length periods; stratify periods into temperature classes by quantile; bin average NEE within temperature classes ordered by  $\uparrow u^*$
- 2. Identify unknown change points (c) using two-phase linear regression
- 3. Test all possible change points in range  $2 \le c \le n-1$ ; select c that minimises SSE
- 4. Calculate f score to test two-phase regression performance against null model
- 5. Bootstrap data to yield distribution of change points; mean is best threshold estimate
- 6. Propagate variance to test effect on cumulative NEP of underlying threshold uncertainty (in progress)


u\* (m s<sup>-1</sup>)




$$y_i = \begin{cases} a_0 + a_1 x_i + \varepsilon, & 1 \le i \le c \\ a_0 + a_1 x_c + a_2 (x_i - x_c) + \varepsilon, & c < i \le n \end{cases}$$


### Operational model:

 $y_i = \begin{cases} b_0 + b_1 x_i + \varepsilon, & 1 \le i \le c \\ b_0 + b_1 x_c + \varepsilon, & c < i \le n \end{cases}$ 



u\* (m s-1)





## Data processing (gap filling - insolation)

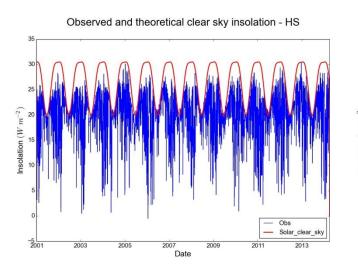
 $\delta = -23.4 \sin[(d + 284)/(2\pi * 365)]$ 

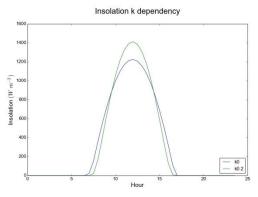
 $sn = 12 + [(gmt_z * 15 - \lambda)/15] - EOT$ 

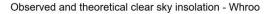
 $S = I_0 \cos Z \, e^{-km}$ 

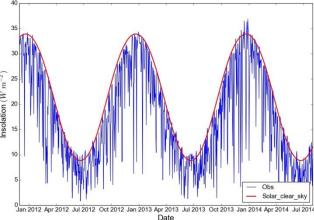
### Uses variant of Beer's law:

- Z (zenith direction),
  - $\blacktriangleright \quad \varphi = latitude (^{o})$
  - $\delta = solar \ declination \ (^{o}),$  $\delta = day \ of \ year$
  - $\succ$  h = hour angle,
    - $\succ$  sn = solar noon,
      - $\blacktriangleright$  gmt<sub>z</sub> = time zone
      - ► EOT = equation of time, EOT =  $0.17 \sin[(4\pi d 80)/373] \sin[(2\pi d 8)/355]$


 $Z = \sin \varphi \sin \delta \cos \varphi \cos \delta \cos h$ 


h = (t - sn)/12 \* 360


• I<sub>o</sub> (TOA normal insolation),


 $I_0 = [1 + 0.034 * \cos(d / \{2\pi * 365.25\})] * 1367.0$ 

- m (optical air mass term),
  - $\succ$  alt = altitude (m)
- k (extinction coefficient):
  - Optimised using site observations



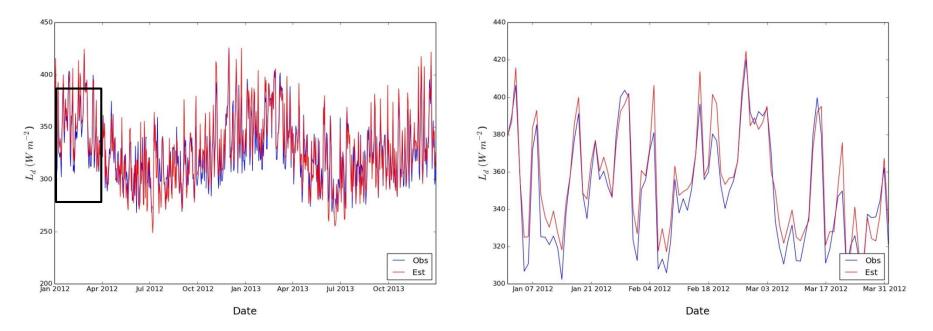






 $m = -alt/8343.5/[\cos Z + 0.15 * (90 - Z + 3.855)^{-1.253}]$ 

## Data processing (gap filling – LW)


### Uses standard Stefan-Boltzmann relation:

• ε (emissivity),

 $\varepsilon = \left(clf + \left[1 - clf\right] \left[a\frac{e}{T}\right]^b\right)$ 

 $L \downarrow = \varepsilon \sigma T^4$ 

- $\blacktriangleright$  a and b are fitted parameters (a = 1.24 and b = 1/7 in original formulation)
- clf (cloud fraction) = ratio of observed to theoretical clear sky insolation
- e = vapour pressure (screen level)
- $\succ \quad T = air \ temperature \ (screen \ level)$



### Downscaled from daily using climatological approach

## Field work

### • Whroo Conservation Area:

- > Ongoing ancillary measurements including litterfall, LAI, birdsong, dendrometers
- Upcoming campaign: bird, vegetation and ant surveys
- Reinstallation of soil moisture / temperature profile to 1.8m depth
- Simultaneous formal soil characterisation and full analysis

### • Riggs Creek:

- Basic maintenance
- Repair and reinforcement of damaged sensors (soil gear and rain gauge)

### • Wombat State Forest:

- Installation of second sonic anemometer
- Installation of multiplexer and reprogramming (mostly done by Anne Griebel)

### • Future priorities:

- Refine respiration estimation algorithms
- Revisit OzFlux standard eddy covariance programs (fix dropped scans, insert profile system control, output stationarity calculations)