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Changes in

the phenology of trees

Climate is changing, and so are seasonal cycles.

But how much, and what does this mean for C cycling?

Examine diverse datasets at different scales, and land surface models
« Satellite observations (MODIS reflectance)

« Eddy-covariance data at 7 sites in the northeastern US

* Ground observations of individual trees

« 21 land surface models




Data caveats 1

MODIS — 8-day and daily:
« All DBF pixels in the eastern US @ 500m? res.
 MODIS daily reflectance of R,G,B,NIR

1. EVI
2. NDVI
3. GCC

* Two date estimation methods:
1. Greendown logistic model (Elmore et al., 2012 Global Change Biology)

2. Robust smoothing spline approach (Keenan et al., 2014 Ecological
Applications)




Data caveats 2
Phenology from eddy-covariance

flux data:

Developed a new method based on singular spectrum analysis

1. Decompose the time series into different modes of
variability

2. Extract the underlying seasonal cycle of each year

3. ldentify phenology dates on a threshold of annual
amplitude basis

This approach greatly reduces the impact of random
variability on phenological date estimation.




Identifying seasons:

Time series
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Results: Long-term changes in
satellite estimates of phenology
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Results: Ground observations of phenology

Hubbard Brook Harvard Forest
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Results: The impact on carbon cycling

DBF: slope =-7.51 (+/-0.98) gC m2 d™"
R2=0.78 (+/-0.1), P <0.01 (+/-0.013)
EVG: slope =3.8 (+/-0.15) gC m 2 d™"
R%=0.74 (+-0.3), P <0.002 (+/-0.002)
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LEVG: slope =3.015 (+/-0.1) gC m 2 d™"
R2 =0.74 (+/-0.1), P <0.008 (+/-0.01 ).
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DBF: slope =9.64 (+/-6.51) gCm 2 d™"
R? =0.42 (+/-0.31), P =0.2 (+/-0.33)
EVG: slope =3.92 (+/-0.57) gC m 2 d™"
R2=0.17 (+/-0.12), P =0.32 (+/-0.36)
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EVG: slope =-3.22 (+/-1.9) gC m 2 d™"
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Results: The impact on carbon cycling

The temperature sensitivity of phenology
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Results: The impact on carbon cycling

The temperature sensitivity of phenology

The performance of land surface models
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1. Consistent changes in phenology can be identified in
datasets at different scales

2. Changes in phenology are leading to increased carbon
uptake, both in spring and autumn

3. The temperature dependence of phenology is highly
conserved across sites

4. Models do not get this temperature dependence right
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