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Motivation

* Vegetation dynamics of global savanna systems , which exhibit
enormous spatio-temporal variability in woody and herbaceous
biomass, structure and plant functional forms are poorly understood. “A
single model cannot adequately represent savanna woody biomass
across these regions” (Lehmann et al. 2014)*.

* Accurate C-allocation and phenology for the main elements of savanna systems
(trees and grasses) may be a key to understanding variations in tree/grass
partitioning in time and space in the savanna biome worldwide.

* No existing vegetation model allows phenology to emerge as a result of
allocation of assimilated carbon.

* New approach: links phenology and allocation, accounting for a
temporal shift between assimilation and growth, mediated by plant
carbohydrate storage

*Lehmann, C. E., Anderson, T. M., Sankaran, M., Hi%ﬁins, S. 1., Archibald, S., Hoffmann, W. A.,
Hanan, N. P., Williams, R. J., Fensham, R. J., and Felfili, J.: Savanna vegetation-fire-climate
relationships differ among continents, Science, 343, 548-552, 2014.
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HAVANA (Hydrology, Allocation and Vegetation-dynamics Algorithm for
Northern Australia) land surface model

Key Features
* Root/shoot C-allocation optimises

NPP based on resource limitation
 Growth decoupled from production
e Storage to buffer stress
* Tree-grass competition
* Emergent leaf and root phenology

Structure=»Function feedbacks
* Mortality = biomass turnover
* Sapwood area = leaf/wood C-
allocation (pipe model)
* Sapwood biomass =»autotrophic
respiration

* Clumping index =2»light interception
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Dynamic Storage: the difference between NPP
and growth

* Change in Storage (zero in long term)

j' dCstorage dt = J

C,NPP dt — J C.Gr wthdt

—

Long term change in
Storage (non-structural
carbohydrate)

Long term NPP Long term growth
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Logistic Growth
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Dynamic Allocation: growth allocated to pool
with highest marginal gain in NPP

e C dynamics controlled by allocation of growth , and first-order

decay, e.g. ic
dt = aLFC,Growth _kLCL
» Carbon allocation coefficients vary in time to maximise the total

carbon gain, i.e. the long-term integral of F. \pp

 Allocation coefficients have “bang-bang” character

e at each instant t, an allocation coefficient of one is assigned to the pool for
which the marginal return on invested growth is largest while all the other
pools receive zero allocation
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Study Area: Northern Australian Tropical
Transect
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Sampling the Northern Australian Tropical
Transect
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HAVANA-POP: Results for Flux Tower Sites
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HAVANA-POP:
Evaluation against
Flux Data and
Remotely-Sensed
Vegetation Cover
(monthly)
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(b) Full biogeochemical model: prescribed phenology and vegetation
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Sampling the Northern Australian Tropical
Transect
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Variation of Structure and Function Along the NATT
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Model Dynamics: Soil Moisture, GPP, LAI
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Model Dynamics: NPP, Growth and Storage
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Model Dynamics: Allocation and C Pools
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Determinant of Woody Vegetation Cover:
Resource limitation or Disturbance ?

e HAVANA-POP : 68-84% biomass turnover is attributable to resource-
limitation, and the remainder to disturbance.

* Agrees with review by Murphy et al. 2015 “Fire impacts controlling
Eucalyptus and Corymbia woody cover have been exaggerated in north
Australian savanna, with intraspecific competition for limited water and
nutrient resources a far stronger driver of cover”*

e Contrasts with African savannas where woody carrying capacity is limited
by rainfall but savannas held below carrying capacity by grazing and

fire.**
*Murphy, B. P., Liedloff, A. C., and Cook, G. D.: Does fire limit tree biomass in
Australian savannas?, International Journal of Wildland Fire, 24, 1, 2015.

**Sankaran, M., Hanan, N. P,, Scholes, R. J., Ratnam, J., Augustine, D. J., Cade, B. S.,
Gignouyx, J., Higgins, S. |, Le Roux, X., and Ludwig, F.: Determinants of woody cover
in African savannas, Nature, 438, 846-849, 2005.
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Conclusion

 HAVANA-POP predicts tree/grass partitioning along the NATT.
* Predictions emerge from complex feed-backs between plant function and
structure, and not from imposed hypotheses about the controls on tree-grass

coexistence

Future Directions
* Implementation of Coupled Phenology/Allocation into CABLE-POP-BLAZE
* Apply to global Savannas
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